
A need for Componentized Transport Protocols

Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Sean Rhea, Timothy Roscoe
U.C. Berkeley and Intel Research Berkeley

1. EXTENDED ABSTRACT
There has been a steady stream of research over the years

into componentized network protocols: protocol implementa-
tions assembled from a variety of building blocks. A promise
of such frameworks has generally been flexibility: a protocol
stack tailored for a particular application can be easily assem-
bled, usually without writing any new code, by binding proto-
col objects together.

Despite its conceptual elegance, protocol implementations
based on this approach have never caught on, particularly at
the transport level. Most applications today make use of a
kernel-provided IP stack, and usually TCP for transport, to
perform network communication. The consensus is that for
both bulk-transfer of data and RPC-like call semantics, TCP
appears to be perfectly adequate, and it is not worth inventing
something new.

In the last few years, considerable research has been de-
voted to both structured and unstructuredoverlay andpeer-to-
peer applications. As distributed systems, these applications
generally include their own techniques for routing messages
on an overlay. Many such deployed systems, including Bam-
boo [11], MIT Chord [12], and P2 [8], use custom transport
protocols that provide TCP-friendly congestion control behav-
ior, but over UDP.

In this work, we are evaluating this design shift by exam-
ining features of P2P applications and overlays that motivate
their designers to adopt custom transport protocols, and the
way in which these applications differ from traditional network-
based applications. Our initial examination focuses on four as-
pects of overlay network applications that motivate customized
transport protocols: application-level routing freedom,next
hop flexibility, application-level buffer management, andal-
ternative congestion control algorithms.

Application-level routing freedom: Widely-distributed ap-
plications have many choices about where to forward a mes-
sage. Unlike traditional client-server applications, there may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIP SOSP’05, October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

be several equivalent end-points for a message (e.g., to retrieve
a replica of some object). Moreover, P2P systems usually in-
corporate some kind of overlay network, even if it is not ex-
plicit in the design (e.g., the structured overlay of a DHT, or
the link-state overlay of an enterprise network of Microsoft
Exchange servers). Overlay networks provide options not only
for the destination of a message, but also the overlay path taken
to get there.

Designers exploit this new-found freedom to achieve high
performance (latency, throughput, reliability, etc.) by imple-
menting sophisticated adaptive policies for forwarding data in
the system. For example, a node in the Bamboo DHT [11]
constantly measures minimum round-trip times to nodes in
its routing table, sets aggressive timeouts, and rapidly resends
messages to alternate neighbors if these timeouts are exceeded.
This performs dramatically better under churn, since Bamboo
can rapidly route around failures and transient load spikes[11].

In terms of the implementation, this inverts a traditional or-
dering of functionality in a transport stack: destination selec-
tion (e.g., the lookup in Bamboo’s routing table) now takes
place downstream of retries, since successive retries for ames-
sage can be sent to different destinations.

Next hop flexibility: In addition to having flexibility in the
choice of destination, some P2P applications have the addi-
tional property of choosing among a very large set of such
destinations—a set whose size and contents are typically not
known in advance. A good example is the iterative routing em-
ployed by MIT Chord [3] and the Kademlia [9] variants used
in eDonkey [2] and trackerless BitTorrent [1].

A problem thus arises in maintaining congestion windows
for a large and unpredictable number of destinations, many
of which are only needed for a single lookup RPC. To ad-
dress this problem, DHash++ uses a custom transport protocol
called STP [3] that maintains aggregate congestion state for
all nodes, rather than the per-node state maintained by TCP,
DCCP [4], etc. Consequently, all outgoing packets traversea
single congestion-control instance before being sent to a vari-
ety of destinations.

This technique represents a different change in the transport
stack implementation from the Bamboo example above. Here,
congestion control is performed independently of the destina-
tion of messages. Indeed, the decision of where to send the
message may be deferred until the congestion window allows
it to be sent.

1

Application-level buffer management:The designers of DCCP
point out the benefits to applications of “late data choice, where
the application commits to sending a particular piece of data
very late in the sending process” [7] and suggest using famil-
iar ring-buffer techniques for queuing packets rather thanthe
traditional Unix API. This change allows latency-sensitive ap-
plications to revise or replace outgoing packets up until the
time when the protocol implementation can send them.

A good motivating example is the use of in-network ag-
gregation techniques for distributed query processors such as
PIER [6] and SDIMS [13]. Data is sent up an aggregation tree
to the root, and aggregation computation is performed at any
intermediate node holding more than one datum at a time. Ide-
ally, each node would send data up the tree eagerly (whenever
congestion control allowed it), but otherwise aggregate itwith
any new data arriving from below.

In practice, traditional protocol implementations (such as
Unix TCP) thwart this, since outgoing data may be held at
a node in a buffer (before being sent, or for retry purposes),
without being available to the query processor for further ag-
gregation. This limitation results in situations where stale re-
sults are sent even though a fresher one is available.

We therefore embrace DCCP’s notion of late data choice,
but extend it further: in addition to being able to revise outgo-
ing packets, widely distributed applications such as distributed
query processors benefit from late creation of the packets them-
selves; an API which provides an upcall to request the next
packet to send allows intelligent just-in-time creation ofpack-
ets, containing an up to date computation at all times.

Furthermore, our approach integrates well with systems that
exploit routing freedom to dynamically vary message desti-
nations, as in our first example: a query processor may have
several potential “parents” to which it can send partial aggre-
gates [10].

Alternative congestion control algorithms: Finally, TCP’s
window-based, sender-driven congestion control algorithm may
not be the most appropriate for all applications. Floyd et al. [5]
propose TFRC: a rate-based, receiver-driven “TCP-friendly”
congestion control algorithm (as opposed to window halving
congestion control employed by sender-driven algorithms)for
flows that benefit from slower changes in sending rate, such
as some multimedia traffic. DCCP allows for selection of sev-
eral different congestion control algorithms, of which TFRC
is one. Our own experience with overlay network implemen-
tations has shown that TFRC-like approaches have significant
advantages, particularly in latency-sensitive overlays that ex-
hibit high loss or unpredictable message delays.

Selection of particular congestion control algorithms can,
of course, be achieved via a parameter to the kernel protocol
stack, but when combined with the application routing behav-
ior described above, it becomes hard to build a monolithic pro-
tocol implementation that can accommodate different conges-
tion control algorithms, themselves occupying different posi-
tions in the data path. A more natural construction factors out
congestion control into a replaceable module that can be judi-
ciously positioned and configured to application and network
characteristics.

Discussion: Taken as an ensemble, the issues above suggest
that the solution space for overlay networks is much wider than

that for client-server applications. This is in part simplybe-
cause they are distributed, and hence must interact with and
adapt to the network as a whole rather than to a single path
through it, blurring the boundary between the application and
protocol implementation.

Component based transport protocols provide a natural re-
placement of black box protocol implementations, with small
processing units that can be arranged to form the desired se-
mantics. We are exploring the space of componentized trans-
port protocols in overlay networks using the transport protocol
portion of P2, a declarative overlay processor we have built.
P2 allows custom transport protocols to be assembled from
reusable dataflow building blocks. A variety of diverse but im-
portant application behaviors can be achieved naturally within
P2’s framework, in ways that are hard or impossible to achieve
with monolithic kernel implementations of transport protocols
such as TCP, RTP, SCTP or DCCP.

2. REFERENCES
[1] Bittorrent goes trackerless: Publishing with bittorrent

gets easier!http:
//www.bittorrent.com/trackerless.html.

[2] eDonkey2000 – Overnet.
http://www.edonkey2000.com/.

[3] F. Dabek, J. Li, E. Sit, F. Kaashoek, R. Morris, and
C. Blake. Designing a DHT for low latency and high
throughput. InProc. NSDI, March 2004.

[4] S. Floyd, M. Handley, and E. Kohler. Problem
Statement for DCCP, June 2005.

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast
applications. InProc. ACM SIGCOMM, August 2000.

[6] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo,
P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and A. R.
Yumerefendi. The architecture of PIER: an
Internet-scale query processor. InProc. CIDR, January
2005.

[7] J. Lai and E. Kohler. A Congestion-Controlled
Unreliable Datagram API, March 2005.

[8] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. InProc. ACM SOSP, October 2005.

[9] P. Maymounkov and D. Mazieres. Kademlia: A
peer-to-peer information system based on the XOR
metric. InProc. IPTPS, March 2002.

[10] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson.
Synopsis diffusion for robust aggregation in sensor
network streams. InProc. ACM SenSys. November
2004.

[11] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling Churn in a DHT. InProc. USENIX Technical
Conference, June 2004.

[12] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan. Chord:
a scalable peer-to-peer lookup protocol for internet
applications.IEEE/ACM Trans. Netw., 11(1):17–32,
2003.

[13] P. Yalagandula and M. Dahlin. A scalable distributed
information management system. InProc. ACM
SIGCOMM, September 2004.

2

A need for Componentized
Transport Protocols

Tyson Condie
with Joseph M. Hellerstein, Petros Maniatis,

Sean Rhea, Timothy Roscoe
U.C. Berkeley and Intel Research Berkeley

2

Componentized Protocols

• Research done in the 90s on building transport

protocols out of reusable building blocks that can

be composed in different ways depending on the
application requirements

3

Why Now?

• Applications are becoming more distributed

• Increasing popularity of overlay networks

– DHT, BitTorrent, Akamai, Narada, Microsoft Exchange

• Overlay network applications demand a highly

configurable transport layer

– Most protocols today are tuned for point-to-point
(client/server) communications

– Forces application programmers to write and tune their own
transport layer

• P2 dataflow model extended into network stack
– Provides highly configurable transport layer

4

• Next destination hop is often an intermediary
to final destination

• Route around failures using alternate
intermediate hops

Alternate Path Selection

Loss

Loss

5

Network receive entirely PUSH based

Application and Network in-sync!

Network send entirely PULL based

Application-level
Buffer Management

6

Work in progress

• Automatic static generation of dataflow graphs

– Graph structure determined by properties of application
and network

– Cost model for choosing among several semantically
equivalent dataflows

• Runtime reconfiguration / reoptimization
– What kinds of modifications and how they are triggered?

– What kinds of statistics would aid in this effort?

• Declarative language for transport layer

– Specify high level invariants that are translated into a
supporting dataflow

7

Thank You!
http://p2.cs.berkeley.edu/

8

Componentized Protocols Using
Dataflow Abstraction

• Aggregate congestion control
– Short lived connections

– Connections that infrequently send messages to a
specific destination (next hop)

– Iterative routing (next hop unknown)

