
Tackling Hardware/Software co-design
from a database perspective

Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida,
Kaan Kara, Dario Korolija, David Sidler, Zeke Wang

Systems Group, Dept. of Computer Science, ETH Zurich, Switzerland
first_name.last_name@inf.ethz.ch

ABSTRACT
Hardware is evolving at a very fast pace due to diverse trends
in the IT industry. In the area of data processing, it is fair
to say that software often just reacts to these changes, try-
ing to accommodate developments that are not always an
immediate step forward in terms of either performance or
functionality. In this paper we report on two ongoing, long-
term projects: Enzian, an experimental hardware platform
to explore the design of software systems on future hard-
ware, and doppioDB, a research database engine built to
explore how to to co-design hardware and software from a
data procesisng perspective. The paper focuses on the pos-
sibilities offered by the combination of Enzian+doppioDB in
terms of enabling novel data processing systems.

1. INTRODUCTION
Cloud computing and the widespread and increasing use

of highly demanding data processing applications are driv-
ing major changes on computer and software platforms. On
the one hand, cloud computing offers economies of scale and
a service model where the user no longer needs to maintain
the infrastructure as this is provided and controlled in a
highly centralized manner. On the other hand, the growing
demand for more computing capacity as well as the increas-
ing computational cost and complexity of data processing
operations has shown how inefficient conventional comput-
ers can be. These inefficiencies arise from their focus on
general purpose computation and lack of support for spe-
cialized operations (e.g., large scale floating point arithmetic
or optimized data movement). When these two trends are
combined, an intriguing scenario arises where specialization
from the application all the way down to the underlying
hardware becomes feasible as a way to efficiently address
application demands.

The technological developments in the last years have pro-
vided ample proof of the prevalence of such a trend. In al-
most all cases, the applications involved are related to data
processing (for the purposes of this paper, we consider ma-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR ‘20)
January 12-15, 2020, Amsterdam, Netherlands.

chine learning just another form of data processing). From
Google’s TPU1 to Microsoft’s Catapult [6] –both projects
boosting the cloud infrastructure to provide more efficient
services– to the growing availability of user programmable
FPGAs in Amazon’s2 or Alibaba’s3 cloud services, there
is no lack of examples demonstrating the trend towards
specialization and hardware acceleration. Intel’s announce-
ments about the embedding of FPGAs into conventional
CPUs4 is an extreme form of the same phenomenon, where
the CPU –the heart of the machine– becomes customizable
and extensible through the inclusion of reconfigurable logic.

In this paper, we focus our attention on hardware/software
co-design from a database perspective and discuss our ef-
forts around building a research hardware platform (En-
zian) as well as the development of a database engine built
on top of Enzian (doppioDB 3.0). The motivation for En-
zian+doppioDB arises from the experience gathered over a
decade of exploring hardware acceleration for data process-
ing. An effort often hampered by (1) having to rely on hard-
ware not designed for the purpose and that, consequently,
quickly becomes a bottleneck; (2) not having open access to
crucial parts of the system and hardware elements, which
severely limits the possibilities for tailoring the design; and
(3) lacking flexibility in the underlying platforms, making
it very difficult to explore different architectural configura-
tions. The main goal of Enzian+doppioDB is to serve as an
open source platform (on both the hardware and the soft-
ware side) to enable researchers to explore a very rich design
space and obtain hard evidence of what are the best designs
at all levels, from the hardware configuration, to the system
stack, to the algorithms involved, and including the appli-
cations that can actually benefit from the new hardware.

For reasons of space, we cannot go into many of the details
pertaining to design decisions and architecture of Doppi-
oDB+Enzian (the paper will be significantly extended in
the final version). Since at this stage of the development we
are more interested in enabling functionality than in perfor-
mance, we focus here on showing how Enzian+DoppioDB
open up the possibility to explore designs that maybe have
been speculated about in the past but for which no suitable
hardware platform was available.

1https://cloud.google.com/tpu/
2https://aws.amazon.com/ec2/instance-types/f1/
3https://www.alibabacloud.com/help/doc-
detail/25378.htm
4https://itpeernetwork.intel.com/intel-processors-fpga-
better-together



(a) (b)

Figure 1: (a) Architectural schematic of Enzian and (b) photograph of the first operational prototypes

2. ENZIAN
Enzian5 is a research computer built from standard com-

ponents and intended to maximize capacity and configura-
tion flexibility. Enzian has not been built explicitly for data
processing but to support a wide range of research activ-
ities ranging from operating systems and system software
to real time software verification and tuning. Nevertheless,
Enzian happens to be –also by design- a particularly inter-
esting platform for data processing because its flexibility in
terms of how it can be used. To the extent possible, both
the software stack on the CPU (Linux based) as well as the
entire stack on the FPGA will be released as open source
including the architectural blueprint.

The design of Enzian has been driven by the goal of build-
ing a platform where hardware bottlenecks are avoided so as
to allow exploring future designs that are years out and not
just what can be done today. There is no claim for the design
to be commercially viable as it is heavily over-provisioned
in several areas. Once a particular use case is chosen, there
are probably more efficient designs that can be derived from
Enzian by removing unnecessary components.

2.1 Hardware
At its core, Enzian is a heterogeneous architecture com-

bining a multi/core CPU and an FPGA (Figure 1.a, which
also indicates the bandwidth available between the different
elements). The current CPU is an 48 ARM core (Cavium
ThunderX v1, with ARMv8-A cores) with 128 GBytes of
memory (DDR4 in 4 DIMMs, running at 2133 MHz) and two
40 Gbps network ports. The FPGA is a Xilinx UItrascale
(XCVU9P) with four 100 Gbs network ports and 512 GBytes
of DRAM (for 2133 MHz DDR4, or 64 GBytes if it is DDR4
2400MHz). The CPU and the FPGA are connected through
a CCPI cache-coherent bus (the processor’s native cache co-
herence protocol) providing 30GB/s of bandwidth. Both
the CPU and the FPGA have their own PCIe interfaces for
additional, optional modules (GPU, Non-Volatile Memory,
High Bandwidth Memory, etc.) and the CPU has 4 SATA
interfaces to connect storage devices.

Many of the design choices behind Enzian are motivated
in part by data processing needs. The over-provisioning of

5http://enzian.systems/

network resources is intended to support distributed data
processing and streaming using clusters of CPUs, FPGAs,
or combinations of both without the networking becoming a
bottleneck as it happens today where the FPGA has access
to the network often only through the CPU. Similarly, the
current version of Enzian allocates four times more memory
to the FPGA than to the CPU, opening up the possibility
of reversing the roles of CPU and FPGA where the CPU
is treated as a specialized accelerator and the FPGA as the
general purpose engine (similar to Systems-On-Chip designs
for embedded systems (SoC) but at server scale). Such a
design would be very useful in, e.g., data streaming engines.

Enzian shares similarities with several existing systems.
Like Intel’s Xeon+FPGA designs or IBM’s CAPI based sys-
tems6, Enzian uses a cache coherent protocol to connect the
FPGA to the CPU. Unlike these systems, Enzian opens up
the FPGA side of the cache coherency protocol so that it
can be tailored and extended as needed. Cache coherency
in accelerators is a broad topic where hard data is often
missing and Enzian will be an useful platform to explore the
space, from the role and performance of cache coherency in
accelerators to questions of scalability of cache coherency,
including the potential of extending cache coherency across
a pool of FPGAs. Unlike in Enzian, in Intel’s design the
FPGA has no local memory and no network access. Sim-
ilarly to Microsoft’s Catapult design [4, 6], in Enzian the
FPGA is connected to the network. Unlike in Enzian, in
Catapult the CPU has access to the network either directly
or though the FPGA (by connecting a network port of the
CPU to one of the network ports for the FPGA) in addition
to the cache coherency protocol. The Microsoft’s and Intel’s
designs are very different but highly complementary. Enzian
covers both and can be configured to behave like either of
them. By using the same underlying hardware, Enzian is
the perfect vehicle to explore the differences and overheads
implicit in the two complementary designs. In the case of
FPGA instances available in cloud premises (Amazon, Al-
ibaba), the FPGAs are configured as accelerators connected
through PCI. There is no cache coherency with the CPU
and no network access, making them a strict subset of the
other systems in terms of architectural configuration.

6https://developer.ibm.com/linuxonpower/capi/



2.2 Software
In addition to building the hardware platform, we are de-

voting considerable effort to develop the necessary software
on both the CPU and the FPGA side. The most relevant
development lines for this paper are the cache coherency
protocol, a shell for the FPGA, LynX, and networking.

The cache coherency protocol on the FPGA side is an
implementation of CCPI. We are aiming for a layered and
open design that will enable applications on the FPGA side
to dictate the level of cache coherency they need and will
allow extending the protocol to tailor it to accommodate a
variety of parallel data processing use cases.

LynX is a shell providing operating system like services on
the FPGA including multi-threading, time sharing, multi-
tenancy, dynamic reconfiguration, interrupts, etc. It also
provides a unified memory space so that applications both
on the CPU as well as the FPGA side see a single mem-
ory space regardless of where the actual physical memory is
located. This unified memory space is based on virtual ad-
dresses, an innovation that allows Enzian code to deal with
pointers and complex data structures in a seamless man-
ner regardless of where the code accessing the data struc-
ture resides. In contrast, existing systems restrict how much
memory can be accessed from the FPGA and, typically, the
FPGA has to work on physical addresses rather than vir-
tual ones, making the interaction between FPGA code and
CPU code quite cumbersome. LynX provides a number of
additional features such as the equivalent of pipes on the
FPGA side to support connecting separate processes on the
FPGAs as it is done on an operating system, a very efficient
dynamic reconfiguration mechanism for different regions of
the FPGA (to enable swapping applications in and out of
the FPGA), and a number of interfaces for memory access
that hide the complexities of a hybrid memory system.

Networking is a key component of Enzian as it can be
readily seen from the amount of networking bandwidth and
access points that are available. Given the lack of suitable
open source alternatives, we have developed two networking
stacks for FPGAs that are available in Enzian. One of the
stacks is a TCP/IP off-load engine supporting conventional
TCP/IP over 10, 40, or 100 Gbs links. Specially at the
lower bandwidths, the stack is capable of supporting many
thousands of concurrent flows, making it suitable for data
center use and virtualization scenarios [14, 13]. The second
stack is a RoCE (RDMA over Converged Ethernet) engine
supporting RDMA and also working at either 10, 40, or
100 Gbs. In both cases, the stacks are open and provide
interfaces for deep packet inspection, content analysis, and
smart NIC features through kernels that can manipulate the
flow and/or the contents of the packets.

On the software side, there are important differences when
comparing Enzian with existing system. The LynX shell is
unique in providing multi-threading on the FPGA through
the use of virtual FPGAs and in supporting a unified
memory space tying together the memory on the CPU and
the FPGA under a common virtual address space. These
two features are important in any system but crucial for a
throughput oriented systems and involving large amounts
of memory resident data such as databases engines. The
open source networking stacks also offer many possibilities
for processing packets and off-loading data processing func-
tionality to the NIC, especially for streaming. Enzian has
also been designed to be used in clusters for larger capacity.

3. DOPPIODB
DoppioDB is a quickly evolving database engine currently

in its third generation (in this paper we will be referring to
doppioDB 3.0 unless explicitly stated). Like Enzian, doppi-
oDB is intended as a platform for research and exploration
of hardware acceleration in the context of databases in par-
ticular and data processing in general, including machine
learning. DoppioDB, in its current incarnation, combines
MonetDB on the CPU side with an open source FPGA shell
providing multi-threading and communication interfaces on
the FPGA side. While not the latest database engine, Mon-
etDB is a stable, well documented, easily extensible, full-
fledged SQL engine with a reasonable performance. IN the
future, though, we will consider other options, especially
when addressing streaming and large scale distributed data
processing.

DoppioDB has gone through three iterations, each one in-
tended to explore a particular issue of hardware/software
co-design in the context of databases. DoppioDB 1.0 imple-
ments hardware acceleration for operators such as hashing,
skyline, or regular expressions [3], all things the database
either does not do at all or does not do well. It is mainly in-
tended as a basis for studying integration issues of the FPGA
such as how to provide multi-threading on the FPGA side
or data transformation functionality to convert a columnar
representation into a row vector based representation suit-
able for machine learning. It also serves as a way to explore
how to add machine learning operators and machine learn-
ing models as part of the engine and SQL as it incorporates
FPGA modules to run stochastic gradient descent and de-
cision tree ensembles [16]. DoppioDB 2.0 provides a more
limited interface between the CPU and the accelerator as it
is intended as a vehicle to study the use of custom processors
on the FPGA rather than using specialized designs for each
operator. It is also the basis for exploring different data rep-
resentations more suitable for the hybrid architecture of the
system than the conventional row/column representations
typically used in database engines [17, 11, 12].

DoppioDB 3.0 is the version being built on top of Enzian
and taking advantage of the additional hardware features
(local memory on the FPGA, networking) and the more
versatile LynX shell driving the FPGA. The architecture of
DoppioDB 3.0 is still evolving given the many new features
that running on top of Enzian enables (see below) and that
allow to explore streaming, distributed execution, machine
learning extensions, etc. At this stage, it is not clear that a
single engine can be built (or that it makes sense to do so)
covering all the use cases and possibilities that Enzian has to
offer. Nevertheless, the initial intention is to try to unify the
development as much as possible so as to allow comparisons
across systems. For instance, we expect Enzian to change
the performance equation for many operators and applica-
tions, enabling operations inside the database engine that
are now done outside. Similarly, Enzian is an ideal plat-
form for combining OLTP and OLAP under a single engine,
with the added advantage of having the FPGA to imple-
ment hardware accelerated analytics and machine learning
to boost the capacity of the OLAP side. Finally, streaming
will be an important use case for Enzian. It is still open
whether it makes more sense to build a separate streaming
engine or to use the combined possibilities the hardware of-
fers to build a hybrid relational-streaming engine. This is
especially interesting with Enzian in a cluster configuration.



0

2

4

6

8

10

12

14

16

4k 8k 16k 32k 64k 128k 256k 512k 1M

T
h
ro

u
gh

p
u
t 
[G

B
p
s]

Transfer size [bytes]

1-channel 2-channels striding

Figure 2: Customized memory controller on the FPGA ac-
cessing memory by striding using LynX interfaces

4. EXPLORING A RICH SPACE

4.1 Near Memory Processing
A first intended use of Enzian + DoppioDB is to explore

the possibilities resulting from having processing capabili-
ties between the DRAM and the processor. The idea is
similar to that behind Oracle’s M7 Data Analytics Acceler-
ator (DAX7) that inserts a dedicated accelerator along the
memory bus near the memory controller units. These ac-
celerators intercept the data as it comes from memory and
can filter the data through Bloom filters, perform predicate
evaluation, or filter rows by bit vectors. They also contain
facilities to compress and decompress data as well as to pack
and unpack the data. Similar systems and ideas focused on
different use cases, are starting to appear in the literature
[5, 1].

In our case, while the general principle would be similar to
that of Oracle’s, there are important differences. First, the
accelerator is implemented on the FPGA as in [5] and, thus,
is not limited to a set of predefined functions but can be used
to run arbitrary code. Second, the interaction with the CPU
happens through a cache coherent interface unlike in the
DAX or [5] where the accelerator is inserted in the data bus.
An extreme version of the system will let the CPU use only
the memory behind the FPGA as its main memory, with the
FPGA acting as a fully customizable memory controller that
can tailor memory access and on-the-fly data manipulation
to the task at hand. The DRAM available to the CPU can
be used as scratch space for storing intermediate results.

The design is made even more interesting thanks to the
network access available to the FPGA and the RDMA net-
working stack, which can be used to implement a form of
remote or far memory [1]. The same customizable memory
management functions provided to the local CPU can be
provided to remote processors (CPU or FPGAs) who can
access the memory through RDMA. This results in a huge
pool of active memory across a cluster of machines with the
possibility of using customizable memory controllers tailor-
ing the memory access to the particular application needs.
If the CPU is not involved at all, the memory on the FP-
GAs can be used to emulate a pool of disaggregated memory
supported by a smart NIC/memory controller and directly

7https://community.oracle.com/docs/DOC-994842

4 8 16 32
0

50

100

150

200

Length of list

L
a
te

n
cy

[µ
s]

RDMA READ

KERNEL

Figure 3: Traversing a remote linked list using conventional
RDMA READ versus using the remote FPGA as memory
controller imnplementing an RPC interface. Whiskers indi-
cate the 1st and 99th percentile. Value size 64 B

accessible through the network. Many other designs are pos-
sible thanks to the ability to insert arbitrary code on the
access path to/from memory and the ability to do this re-
motely through RDMA.

One example demonstrating the potential for using the
FPGA as a customizable memory controller is to provide to
the CPU striding access to the memory on the FPGA. The
DRAM on the FPGA is typically accessed through several
channels (4 in Enzian). To improve memory bandwdith,
these channels can be used independently but the applica-
tion needs to take care of the coordination and sharding
of the data. LynX provides a simple interface where the
data sharding and the strided access to all memory modules
happens automatically and transparently. A reader familiar
with traditional databases will immediately detect the sim-
ilarities of the approach with that of RAID or parallel disks
used in the past to increase the I/O bandwidth in database
engines. An initial implementation of this idea on LynX and
Enzian allows us to compare automated striding with hand
coded single channel and two channel accesses (Figure 2).
The results show that the performance of memory striding
is very close to that of hand coded access to two channels
but with the advantage of being fully automatic. The im-
pact of such functionality on, e.g., a database scan over large
amounts of data is obvious, especially when combined with
processing or filtering done directly at the FPGA.

Another example of customized memory controller is the
traversal of remote data structures using RDMA for remote
access to memory and going through the FPGA to provide
additional functionality (what we call a kernel). We have
implemented, for instance, a simple kernel with a RPC in-
terface that, upon a read request, triggers the FPGA to
traverse a linked list looking for the corresponding item and
returning it when found. We have similar examples with
B-trees for indexes or hash tables for key-value stores. This
approach allows to implement one-sided RDMA calls that
behave like two-sided RDMA calls. Figure 3 shows the dif-
ference in access latency between using our FPGA kernel
approach and using conventional one sided RDMA reads.
The example mirrors recent work in accessing remote in-
dexes using RDMA but using the FPGA as a smart NIC
[18], which has considerable advantages in terms of perfor-
mance. The same approach can be used to implement scans
or indexed access over tables, all happening at the remote
memory and accessible through a simple get interface.



From a database perspective, the possibilities opened up
by near memory processing and smart remote memory are
endless. It is easy to imagine implementing a customized
pre-fetcher that, knowing the operator that is being ex-
ecuted, e.g., a table scan, takes advantage of the known
access pattern to pre-fetch the data accordingly. The pre-
fetcher can be combined with near-memory processing capa-
bilities such as pre-sorting the data, partial aggregation, fil-
tering and transformation (compression/decompression, en-
cryption/decryption). Operators accessing memory through
an index can complete the index traversal entirely on the
memory controller, freeing up the CPU, not to mention the
avoidance of cache pollution on the CPU as the index does
not reach the CPU cache during the traversal operation.
Similarly, the memory controller could perform data trans-
formations such as turning rows into columns or vice-versa
as we have implemented in doppioDB 1.0 [3], typecasting,
checking constraints as data is read or written, or even give
the impression of the pages in memory have different phys-
ical representations. More ambitious efforts could combine
these features to, e.g., make graphs look like tables by dy-
namically navigating the graph and listing the nodes visited,
make tables look like graphs by constantly performing re-
cursive queries that determine the next row to explore, etc.
In essence, the memory becomes just one form of physical
representation and the customized memory controller imple-
mented on the FPGA provides arbitrary, consistent views
over such physical representation.

4.2 Near Storage
The notion of customizable memory controller can be ex-

tended to any form of storage, be it Flash, NVM, HBM, con-
ventional disks, or even disaggregated memory. The same
ideas discussed above apply in this context as well, includ-
ing the fact that the ability to access the system through
RDMA potentially turns every Enzian node in the system
into a smart storage server.

Enzian+doppioDB can be configured to implement a sys-
tem such as Caribou [8] which provided a key value store on
FPGAs directly supporting data processing and consistency.
The advantage of Enzian+doppioDB over Caribou is the ac-
cess to a full-fledged database on the CPU side. From the
database side, such a system can be used to delegate to the
FPGA the task of coordinating the replication of updates
to the database, thereby providing a way to implement con-
sistent replication without having to involve the CPU. The
extraction of the actual changes to propagate can be done
by analyzing the memory traffic, with no CPU overhead and
minimal latency.

Enzain+doppioDB can be also used to implement smart,
local disks such similar to those proposed by Samsung [9].
This is orthogonal to whether the compute node has only lo-
cal storage or has access to a larger pool of storage servers as
it commonly happens in cloud settings. The same function-
ality and advantages apply regardless of whether the local
storage is a shared-nothing architecture or is used as a lo-
cal cache on top of a remote storage system. Beyond such
on-the-fly data processing tasks, we also envision the pos-
sibility of using the FPGA based memory controller as a
way to perform important background tasks such as repair-
ing memory errors, cleaning up data, obtaining statistics on
the data itself, automatic index maintenance, replication,
check-pointing, etc.

4.3 Extending Database Functionality
It can be, controversially, argued that additional through-

put or reduced latency is no longer the main problem of
database engines. Existing systems, whether commercial or
open source, seem to be good enough for the vast majority of
workloads and situations. Although hardware acceleration
has become an important topic, CPUs are often very good
at what they do. For instance, in DoppioDB 1.0 we have not
been able to accelerate complete joins when compared to the
best multi-core implementations (this might change when
FPGAs have High Bandwdith Memory). The approach we
have taken in doppioDB is that it is more promising to ex-
tend the functionality of databases than improving existing
features. An example from our previous work is string pro-
cessing through the SQL LIKE clause. Existing engines sup-
port it, but only in limited settings and performance is often
dismal. An FPGA based accelerator boosts the performance
of queries using LIKE by orders of magnitude [15], thereby
enabling much more efficient processing within the database
of an important data type. The same can be said about
performing machine learning directly on the database [3] or
finally integrating well known operators, e.g., Skylines, that
few systems actually support. Currently we have a number
of machine learning operators from stochastic gradient de-
scent in various forms to decision trees already implemented
and tested on the FPGA that will be integrating soon in En-
zian to take advantage of the improved hardware [17, 11].

Another approach to extend databases is to use a ma-
chine learning model to, on the fly, infer the correct value
for missing values on tuples being written to or inserted
into the database. This would be a very useful functional-
ity, enforcing integrity constraints and even performing ETL
operations on the fly. Doing so using a multi-core machine
is probably not efficient, as running the inference would in-
terfere with normal operations. In Enzain+doppioDB, the
FPGA can be used for inference as it can not only per-
form the inference without using CPU resources but can also
perform the insertion directly once the missing values are
completed. The parallelism intrinsic to an FPGA and the
possibility of implementing deep pipelines give the FPGA
a significant edge over the CPU for such tasks. The infer-
ence process can be combined with other operations such as
performing complex data cleaning upon insertion.

The high bandwidth cache coherency protocol between
the CPU and the FPGA allows to forward a significant
amount of data from the CPU to the FPGA. We can take
advantage of this to send hardware and software instrumen-
tation data form the CPU to the FPGA to run ML models
and heuristics geared to optimize the performance of the sys-
tem by, e.g., reassigning priorities, allocating more memory,
increase or reduce parallelism, etc. This is a basic system
chore that becomes most interesting in the context of a query
optimizer reacting in real time to the instrumentation data
obtained from the CPU. Seeing the FPGA as a co-processor
in charge of auxiliary system tasks is a powerful scenario.
For instance, these days there is a lot interest in using learn-
ing to optimize different database aspects. Most of this work
does not discuss the logistics of learning and how to use it in
a dynamic environment. Enzian+doppioDB provide a plat-
form for processing an exhaustive stream of instrumentation
data on the fly (see below) to learn from as a first step to-
wards making automatic database tuning and operation a
reality.



4.4 Streaming at Wire Speed
One of the key advantages of FPGAs is the ability to pro-

cess data in a streaming fashion. This has been, in fact, one
of the main use cases of FPGAs in applications such as deep
network packet inspection or algorithmic trading, where la-
tency is of utmost importance and where the overhead of
receiving data through a network card, transfer the data
to memory through PCI, and then from there to the CPU
for processing is simply not an option. The architecture of
Enzian+DoppioDB opens up the possibility of combining a
regular relational engine with a streaming engine running
on the FPGA that can process the streams at wire speed,
without any latency overhead, and using pipelined designs to
significantly increase throughput. The fact that the FPGA
has access to unified memory space implies the FPGA can
read directly tables and use them to, e.g., join them with ar-
riving streams without involvement of the CPU. Just from
the nature of the data path through the architecture, such
a setting will immediately be faster than any CPU based
streaming system. Currently we are exploring the use of
Enzian+doppioDB in conjunction with our own streaming
engine [7, 10] to identify the most promising venues for ac-
celeration.

5. PROJECT STATUS AND TIMELINE
At the time of writing, we have two operational prototypes

connecting a Cavium ThunderX board to a Xilinx Ultrascale
board (Figure 1.b). These prototypes have been used for in-
strumentation, to obtain traces of the system’s components,
to developed LynX, the memory controllers, test the net-
working stacks, as well as to develop the FPGA side of the
cache coherency protocol.

An integrated board following the basic design shown in
Figure 1.a is expected to be available at the end of 2019.
A full release of the hardware and software is intended for
the second half of 2020. Simultaneously, we are already
exploring the next versions of Enzian considering different
processors, different accelerators, and changing key aspects
of the system such as the cache coherence protocol.

We plan to have a basic version of doppioDB on top of En-
zian at the time the system is publicly released. Currently,
we are obtaining experimental data on different configura-
tion and basic functionality, exploring the potential of many
of the ideas described in the paper: database extensions for
ML, stream data processing, views over memory representa-
tions, and uses of RDMA and smart NICs in databases [2].
The next steps will be integrating each one of those ideas in
doppioDB and evaluate their performance.

Enzian+doppioDB is an open research platform. We hope
the project turns into a collaborative effort where many
groups contribute to creating potential leverage to influence
hardware evolution through prototype systems backed by
data obtained on actual hardware.

Acknowledgements
The following doctoral students and post-docs have con-
tributed to the development of Enzian and DoppioDB in a
variety of capacities: Zsolt Istvan, Adam Turowski, Tobias
Grosser, Amit Kulkarni, Reto Achermann, Abishek Ramdas.
We would like to thank Cavium and Xilinx for the generous
donations of hardware that have made the construction of
the first prototypes possible.

6. REFERENCES
[1] M. K. Aguilera, K. Keeton, S. Novakovic, and

S. Singhal. Designing far memory data structures:
Think outside the box. In Hot OS, 2019.

[2] G. Alonso, C. Binnig, I. Pandis, K. Salem,
J. Skrzypczak, and et al. DPI: the data processing
interface for modern networks. In CIDR, 2019.

[3] G. Alonso, Z. Istvan, K. Kara, M. Owaida, and
D. Sidler. DoppioDB 1.0: Machine Learning inside a
Relational Engine. IEEE Data Engineering Bulletin,
42(2), 2019.

[4] A. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, and et al. A Cloud-Scale Acceleration
Architecture. In MICRO, 2016.

[5] Y. Fang, C. Zou, and A. Chien. Accelerating Raw
Data Analysis with the ACCORDA Software and
Hardware Architecture. In PVLDB, 2019.

[6] D. Firestone, A. Putnam, H. Angepat, D. Chiou,
A. Caulfield, C. Chung, M. Humphrey, and et. al.
Azure Accelerated Networking: SmartNICs in the
Public Cloud . In NSDI, 2018.

[7] M. Hoffmann, A. Lattuada, F. McSherry, V. Kalavri,
J. Liagouris, and T. Roscoe. Megaphone:
Latency-conscious state migration for distributed
streaming dataflows. PVLDB, 12(9), 2019.

[8] Z. István, D. Sidler, and G. Alonso. Caribou:
Intelligent distributed storage. PVLDB, 10(11), 2017.

[9] I. Jo, D.-H. Bae, A. S. Yoon, and J.-U. Kang.
YourSQL: A HighPerformance Database System
Leveraging In Storage Computing. PVLDB, 9(12),
2016.

[10] V. Kalavri, J. Liagouris, M. Hoffmann, D. C.
Dimitrova, M. Forshaw, and T. Roscoe. Three steps is
all you need: fast, accurate, automatic scaling
decisions for distributed streaming dataflows. In OSDI.

[11] K. Kara, K. Eguro, C. Zhang, and G. Alonso.
ColumnML: Column-store Machine Learning with
On-the-fly Data Transformation. PVLDB, 12(4), 2018.

[12] K. Kara, Z. Wang, C. Zhang, and G. Alonso.
DoppioDB 2.0: Hardware Techniques for Improved
Integration of Machine Learning into Databases. In
PVLDB, 2019.

[13] M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and
S. Lopez-Buedo. Limago: an FPGA-based
Open-source 100 GbE TCP/IP Stack. In FPL, 2019.

[14] D. Sidler, Z. István, and G. Alonso. Low-latency
TCP/IP stack for data center applications. In FPL,
2016.

[15] D. Sidler, Z. István, M. Owaida, and G. Alonso.
Accelerating Pattern Matching Queries in Hybrid
CPU-FPGA Architectures. In SIGMOD, 2017.

[16] D. Sidler, M. Owaida, Z. István, K. Kara, and
G. Alonso. DoppioDB: A Hardware Accelerated
Database. In SIGMOD, 2017.

[17] Z. Wang, K. Kara, H. Zhang, G. Alonso, O. Mutlu,
and C. Zhang. Accelerating Generalized Linear
Models with MLWeaving: A One-Size-Fits-All System
for Any-Precision Learning. PVLDB, 12(7), 2019.

[18] T. Ziegler, S. T. Vani, C. Binnig, R. Fonseca, and
T. Kraska. designing distributed tree-based index
structures for fast rdma-capable networks.


