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Rack-scale systems with large, shared, disaggregated, 

and persistent memory need solid protection and 

authorization techniques. Our solution uses a memory-

side capability enforcement processor that gates memory 

accesses through extended capabilities, enables fine-

grained access control beyond a single address space, 

and minimally disrupts the programming model. 

A t the crossover point between technology 
adoption curves (such as persistent mem-
ory, rack-scale disaggregate memory, and 
memory semantics fabrics), it is vital to 

understand the benefits of defying conventions. In 
this article, we examine the ramifications of persistent 
fabric-attached memories (FAMs) at the rack scale and 
how approaches that predate memory paging, such as 

capabilities, could enable a robust and scalable protec-
tion mechanism.

Memory has always been considered a scarce resource 
that needs to be shared among multiple programs. Since 
the inception of virtual memory in the 1960s,1 operating 
systems (OSs) have overcome the limitations of small 
physical memory by a variety of mechanisms to give 
users and programs the perception of unlimited mem-
ory. Virtual memory was—and remains today—a pow-
erful mechanism with which to optimize memory allo-
cation, simplify addressing, manage fragmentation, and 
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allow oversubscription by means of 
paging out to slower media and pag-
ing in when needed. Over time, these 
operations have become so important 
that hardware support has appeared 
in all modern processors in the form of 
caches of the virtual memory tables, or 
translation look-aside buffers (TLBs).

Once the OS and hardware manage 
virtual memory as fixed size pages and 
include all of the necessary structures 
for virtual-to-physical address transla-
tion, it becomes natural to extend these 
tables to capture related concepts, such 
as access protection. For security, pri-
vacy, and error-containment reasons, 
not all programs are allowed to access 
all memory pages. Access-right infor-
mation (typically read, write, or exe-
cute privileges) is stored as metadata 
associated with a page, cached in the 
TLB, and checked at page granular-
ity. This arrangement makes the pro-
tection check fast because it is part of 
the translation process of each mem-
ory-access instruction. It also enables 
precise exceptions to generate accurate 
notifications about the nature of the 
protection violation. This is import-
ant to implement functionality, such 
as on-demand paging, shared libraries, 
or copy-on-write, and it requires the 
ability to precisely restart a faulting 
memory instruction after an exception 
occurs. However, it is a compromise 
because programs would naturally like 
to expose a different, often finer, gran-
ularity protection, possibly at the indi-
vidual-object level, and not be tied to 
an arbitrary page size.

Page-level protection also creates 
the opportunity for malicious ex-
ploits, such as buffer and stack over-
f lows, when multiple tenants share 
a single page or execute code in a 
shared library. Because all addresses 
within a page inherit the same pro-

tection, privileged execution of code 
may be achieved simply by gaining ac-
cess to a piece of the memory address 
space. For small page sizes this has 
(historically) been considered an ac-
ceptable compromise across security, 
performance, and hardware complex-
ity considerations.

However, the technology has sub-
stantially changed. Individual com-
puters can afford terabytes of physi-
cal memory, and rack-scale systems 
federating hundreds of elements are 
approaching petabytes. At this scale, 
organizing memory in kilobyte-sized 
pages requires billions of pages, and 
the overhead to manage the map-
pings does not scale, as page tables and 
page-table walks overflow TLBs and 
caches. At the same time, this abun-
dance of memory removes the orig-
inal motivation for virtual memory 
(paging to disk), and most programs 
keep all of the data in memory because 
of performance issues. As a conse-
quence, the trend is to shift toward large 
(1–2 MiB) or huge (1–4 GiB) page sizes, 
so that applications can allocate most 
of their working set right away, allow-
ing page-table overhead to scale with 
memory-size growth and move the OS 
overhead out of the way.

Unfortunately, larger pages increase 
security risks and can expose the 
page to errors (or malicious attacks) 
because any address within a page can 
be accessed without additional fine-
grained control. More importantly, the 
underlying problem comes from the 
bundling of the two key memory con-
cepts, translation and protection, in the 
same page structure. This is becoming 
a primary cause of tension in the OS: 
the needs of a large translation unit 
and a small protection granularity are 
fundamentally incompatible, and we 
need a different approach. In addition, 

certain workloads experience huge 
performance benefits from superpages, 
but others suffer—in practice, the shift 
is toward greater flexibility in the size 
of translation units within the con-
straints of different page sizes.2

Paging was not the only memory 
protection concept developed in the 
1960s. Segmentation and capabili-
ties3 are two alternative approaches 
that support variable-size memory 
units, from a single byte to the whole 
address space. Both approaches can 
coexist with paging, and, for a while, 
some processors supported segmen-
tation, while other systems sup-
ported capabilities.

Capabilities are particularly rel-
evant to this discussion: they are 
unforgeable tokens of authority used 
to protect memory at a fine granulari-
ty, down to a single-byte location. For 
a full implementation, they require 
processor instruction set architecture 
(ISA) support to keep extra information 
(hidden to application programming) 
associated with memory addresses 
(i.e., pointers) stored in registers and 
memory. A capability-enhanced CPU 
can check this information upon every 
individual memory access to ensure 
that the access is allowed. The check 
can be extended to manipulate the ca-
pabilities themselves, such as secure-
ly storing (and retrieving) them to 
memory, while preventing access from 
unauthorized code. ISA-supported ca-
pabilities can be passed in user space 
without performance costs, but they 
require invasive hardware changes to 
the memory hierarchy, the microarchi-
tecture (e.g., extending the register file 
and caches to store the metadata), and 
the ISA itself. The software stack also 
needs to change to maintain and uti-
lize capabilities effectively when describ-
ing data and code structures.
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CHERI CAPABILITIES
Capability Hardware Enhanced RISC 
Instructions (CHERI) (www.cheri-cpu 
.org) is an example of an ISA-supported 
capability implemented as extended, 
or safe, pointers4 compatible with 
off-the-shelf software. Simple pointers 
are references to memory locations, 
and they contain (virtual) addresses. 
Capabilities are extended pointers that 
contain base, offset, length, and protec-
tion bits (Figure 1). Length defines the 
address range that the capability can 
access, counting from the base address. 
Offset represents the individual mem-
ory access target (the virtual address to 
access memory through the capability 
is base plus offset). The protection bits 
grant read, write, and execute permis-
sions. A process owning a capability can 
derive other capabilities with reduced 
rights, in terms of space or access. This 
allows a process to subdivide a capabil-
ity to provide access to only a subset of 
the initial address range, or to remove 
rights, such as execute or write (main-
taining the monotonicity of capability 
derivation). The software tool chain 
(compiler and linker) and programmers 
can selectively manage access to mem-
ory regions by passing to other pro-
grams capabilities that refer to a region 
subset or limited access rights. For 
example, a memory manager can hand 
out access to parts of the memory buffer 
to clients, or a server can provide write 

access to only a single writer, while 
allowing other clients only read access.

Supporting capabilities requires 
changing the ISA and microarchitec-
ture. CHERI extends capability reg-
isters to access memory and adds the 
supporting enforcement logic. Enforce-
ment compares the contents of capabil-
ity registers with the attempted access 
after the capability has been manipu-
lated through typical pointer arithme-
tic operations. Capabilities are enforced 
on data access to support passive data 
checks and instruction execution (e.g., 
procedure call/return, jumps) for active 
objects and compartmentalization. 
CHERI also adds privileged instructions 
to store/load to/from memory using 
capabilities. To prevent processes from 
forging capabilities stored in memory, 
a tag bit is maintained for each capa-
bility in memory, which is propagated 
through caches and the TLB into 
the capability registers. Any attempt 
to modify a memory location contain-
ing capabilities by unauthorized code 
clears the capability bit and effectively 
invalidates the capability, prevent-
ing it from accessing data. The tag 
enforces noncorruption and ensures 
valid provenance.

CHERI capabilities double the size 
of pointers from 64 to 128 bits (plus one 
tag bit). Using capabilities on a single 
node requires small changes to soft-
ware and limited changes to the OS. 

Most changes can be hidden in librar-
ies or directly implemented by the 
compiler and tool chain.

CAPABILITY ENFORCEMENT 
ACCELERATORS
CPUs and ISAs are evolving slowly. 
It takes several years for a new ISA 
feature to be implemented and even 
longer to reach the market, be sup-
ported by an industry-standard OS, 
and, finally, be adopted by application 
developers. ISA-supported capabil-
ities are no exception. Moving some 
of the ISA support into a separate sys-
tem (outside the CPU) could lower the 
adoption barrier.

Furthermore, ISA-supported capa-
bilities exist within a single virtual 
address space. Sharing across address 
spaces (or persistent memory) requires 
additional OS support and incurs per-
formance costs in crossing OS bound-
aries. This eliminates the perfor-
mance advantage of ISA-supported 
capabilities in the user space when 
dealing with multiple processes or OSs 
at the rack scale.

The alternative to CPU-supported 
capabilities is a dedicated external 
component. In this case, we propose a 
memory-side capability-enforcement 
processor (CEP), a hardware controller 
(also called an accelerator) interposed 
on the load/store path between the 
CPU and the memory. The CEP acts as 

FIGURE 1. The format of CHERI capabilities compared with a simple pointer and (micro)architecture changes. IF: instruction fetch; ID: 
instruction decode; EX: execute; MEM: memory access; ALU: arithmetic logic unit.
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a secure memory controller, taking the 
responsibility of guarding the access 
to the memory it controls through a 
capability system. The CPU can use it 
by issuing specific CEP instructions to 
access memory or to manipulate the 
CEP-stored capabilities. In its straight-
forward implementation, the CEP can 
be used to replace the ISA support for 
capabilities, with minimal changes to 
the rest of the system. However, some 
functionality, such as compartmental-
ization, may require the CEP to rely on 
OS support. The CEP also provides sup-
port for capabilities not covered by the 
ISA capability model, such as memory 
sharing (intra- and internode) and per-
sistent memory.

Figure 2(a) shows how ISA-supported 
capabilities enable secure access within 
individual virtual address space. Appli-
cations can share memory, but capabili-
ties cannot be stored in shared memory, 
nor can they be securely used to access 

shared memory. An ISA-based system 
cannot enforce capabilities across dif-
ferent virtual address spaces or differ-
ent OS instances. The CEP overcomes 
these limitations, because it operates 
memory-side on the physical addresses, 
rather than virtual addresses, and 
introduces handles in the user space 
[Figure 2(b)]. The CEP tracks the han-
dles and checks them when data are 
accessed so that only allowed processes 
can proceed. The CEP [Figure 2(c)] can 
also supplement ISA capability enforce-
ment across virtual address spaces.

RACK-SCALE SYSTEMS  
AND CAPABILITIES
Enhancements in optical intercon-
nects, memory semantics protocols, 
and the emergence of fabric-attached 
nonvolatile memory (NVM) are mak-
ing rack-scale memory a reality. This 
enables the individual nodes in a rack-
scale system to access all memory 

through a familiar load/store interface, 
with performance comparable to that of 
local memory access. The abundance of 
globally addressable memory enables 
new in-memory algorithms and non-
partitioned data structures that are 
impractical on traditional clusters due 
to performance, power, and cost lim-
itations. Unfortunately, it also further 
widens the chasm between protection 
and translation, making the case for 
capabilities even stronger.

The concept of capabilities needs to 
evolve to support memory in rack-scale 
systems with many nodes running 
independent OSs. When rack-scale 
systems also include shared NVM, as 
some emerging paradigms combining 
memory and storage advocate, capabil-
ities need to evolve accordingly.

Rack-scale systems consist of mul-
tiple nodes, each running its own OS 
instance in support of the scale-out 
model. They also have a stronger trust 

FIGURE 2. The CEP. (a) ISA capabilities allow fine-grained protection within a single virtual address space. (b) Transition: the CEP fine-
grained protection uses handles across the physical address space. (c) Vision: the CEP supplements the ISA in fine-grained protection 
across VAS/PAS and NVM. DRAM: dynamic random-access memory; NVRAM: nonvolatile random-access memory; VAS: virtual address 
space; PAS: physical address space; MMU: memory management unit; CEP: capability enforcement processor. 
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model—if a single OS is compromised, 
the node boundaries prevent propa-
gation to other nodes. In a distributed 
multi-OS environment, revocation of 
capabilities becomes a complex task 
because we can no longer rely on a 
single OS (and single execution hard-
ware) to have full control of a capabil-
ity. Managing distributed capabilities 
requires the careful interaction of 
hardware support, OSs, and the appli-
cation runtime.

An interesting programming para-
digm of rack-scale systems organizes 
applications into microservices and 
containers. They benefit from fine-
grained protection because they can 
be packaged much more densely than 
what a given page size allows. In addi-
tion, they benefit from both code and 
data protection by selectively allow-
ing which components can be invoked 
from other components. Delegation 
in the case of microservices is a very 
powerful programming approach to 

selectively enable access to individual 
components of the data structure at 
fine granularity.

In this environment, threats can 
come from a compromised or buggy 
OS, application, or any other piece of 
system software. The major concern is 
with unauthorized writing to the mem-
ory. When memory is persistent and 
not cleared after reboot, the threats/
bugs are exacerbated because contents 
may persist beyond the lifetime of the 
OS. To address these threats, we lever-
age different security models. ISA sup-
port deals with the individual virtual 
address space; OS capabilities enforce a 
node-level trust model; and at the rack-
wide scale, we leverage the TOR man-
ager, secure enclaves, and the network-
ing components that enable access to 
the FAM.

The CEP model naturally expands 
to cross-node capabilities in rack-scale 
systems. Because the CEP resides close 
to memory, it is effective in enforcing 

policies and management of the data 
access from multiple nodes, following 
the self-protecting memory principle. 
Although the performance implica-
tions of checking accesses for very fast 
(node-local) memory would be severe, 
they become tolerable for slower devices 
(NVM byte-addressable technologies) 
or when the accesses traverse a multi-
hop fabric (FAM at the rack scale).

Another way to look at this is from 
the perspective of address spaces. 
ISA-supported capabilities take a 
virtual-address-space view [Figure 3(a), 
left], and an OS takes the node view 
[Figure 3(a), right]; the rack-wide view 
addresses the rack scale because any 
part of the NVM could be mapped into a 
single node. Because of the size of FAM 
and the distance from each CPU, we can 
offload some of the capability enforce-
ment from the CPU into accelerators 
closer to FAM [Figure 3(a), center].

Figure 3(b) presents a sample rack-
scale configuration that uses FAM 
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pooled and accessible by all nodes, 
as some approaches advocate. Simi-
lar considerations apply if rack-scale 
memory is distributed and accessi-
ble by more traditional mechanisms, 
such as RDMA remote direct memory 
access or NVM express over fabrics. 
Adapting capabilities to the rack-scale 
environment is critical to reliable soft-
ware development in that environ-
ment, but it also requires extending  
our notion of the model and imple-
mentation of the underlying capabilities. 
There is always a lowest layer of the 
system software (kernel, supervisor, 
hypervisor, whatever runs on the TOR 
control processor, and so on) that mul-
tiplexes the machine, and this is where 
the software that controls the lowest 
level of capabilities lives, the rack-
wide capability management system. 
Anything else (virtual machine, con-
tainers, bare-metal OSs on a secure 
partition of the hardware) are above 
this layer.

Compared with single address-
space capabilities (such as CHERI), 
which live and die with the creation 
and termination of a process, capa-
bilities in a rack-scale system are long 
lived. They can outlive not only the 
process that created them or was using 
them but also an OS reboot or even 
reinstall. Capabilities can be stored in 
the memory of other nodes or in glob-
ally shared NVM that is saved across 
OS reboots. There is a temporal aspect 
of capability persistence that does not 
exist with ephemeral capabilities (local 
capabilities that live in local memory 
and a single process). In addition, when 
a capability is stored in persistent data, 
the capability itself has to be persistent 
for the system to be consistent. Because 
the notion of persistence is always tied 
to a certain class of failures, capabili-
ties can be considered persistent when 

they are stored in nonvolatile device or 
anywhere outside the failure domain of 
the process that created them. Capabil-
ities derived from a persistent capabil-
ity can be ephemeral [e.g., they live in 
memory that disappears with the pro-
cess, like local dynamic random-ac-
cess memory (DRAM)], but the master 
capability needs to be persistent. The 
opposite is not true: persistent capa-
bilities cannot point to process-local 

(volatile) memory; only ephemeral 
capabilities can.

Local pointer bugs may corrupt 
local data within a process, but the 
corruption is limited to the process 
lifespan. With NVM, pointer bugs may 
persist in memory indefinitely, lead-
ing to corruption, regardless of pro-
gram restart or system reboot, mak-
ing fine-grained pointer and memory 
protection essential to the success of 
NVM-based systems for nonmanaged 
languages (and for the runtimes of 
managed languages, frequently imple-
mented in C/C++).

Unlike local capabilities, rack-scale 
capabilities can be named and accessed 
globally from any node, not just from 
the node where they were created. To 
accomplish this, we record the creation 
source node in the capability, so that 
accessing memory can be appropri-
ately directed. Similarly to persistence, 
a capability pointing to global data has 

to be global [Figure 3(b)]. When global 
capabilities are passed to other nodes, 
revocation complications arise.

Rack-scale systems typically in -
volve additional levels of memory 
translation beyond the processor’s 
memory management unit. In addi-
tion to virtual (unique to a process) and 
physical (unique to a node) addresses,  
memory locations have a unique fab-
ric address. These can be made of node 

identifier and local addresses (for leg-
acy networks) or built in the protocol 
itself (for new interconnects, such as 
Gen-Z). Regardless of the mechanism, 
fabric addresses are larger than indi-
vidual node addresses, and, ideally, 
one would like to have a direct trans-
lation from 64-b virtual addresses to 
unique fabric addresses. However, 
when using ISA load/store instruc-
tions, the smaller physical address 
(lower than 52 bits today) gets in the 
way, causing a disconnect between 
the CPU and memory, resulting in 
the need for memory-side translation 
support (which makes a CEP approach 
even more appealing).

Pursuing this kind of work requires 
the intersection of many areas of com-
puter science. We six coauthors come 
from diverse and complementary back-
grounds: microarchitecture, architecture, 
distributed systems, system software, and 
security. This makes us ideal collaborators 

CAPABILITIES CAN BE STORED IN THE 
MEMORY OF OTHER NODES OR IN 

GLOBALLY SHARED NVM THAT IS SAVED 
ACROSS OS REBOOTS.
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and ensures that all of the aspects of the 
design are discussed and covered.

CAPABILITY REVOCATION
Being unforgeable, capabilities can be 
passed around to access resources (i.e., 
memory). In a rack-scale system, the 
other processes can be microservices 
that execute on other nodes through 

a distributed application program-
ming interface. This creates an inter-
esting complication: once the owner 
releases a resource, all of the capabili-
ties representing that resource need to 
be revoked. Otherwise, a subsequent 
access will result in an error that would 
be difficult to debug and would require 
complicated client-side error handling 

schemes. It would be as if someone 
decided to change the lock to a shared 
closet, without telling everyone with a 
key that the key no longer works.

One-sided revocation is nontrivial in 
rack-scale systems because capabilities 
can be dispersed, and it may take time, 
and a complicated distributed algo-
rithm, to reach revocation closure. For 
nonarchitectural capabilities, the OS  
maintains data structures that track 
trees of derived capabilities, which are 
then parsed to revoke all derived capa-
bilities. Even in a single system, revo-
cation represents a complex activity 
that can cause performance penalties 
and is nontrivial to implement effi-
ciently. In CHERI, the locations of capa-
bilities can be tracked with assistance 
from the paging mechanism, but this 
requires sweeping through the mem-
ory with suitable atomicity properties. 
In a rack-scale system, with distributed 
state, revocation is extremely complex 
and must avoid the need for global 
operations to ensure adequate scalabil-
ity and reliability.

An alternative is lazy revoca-
tion, which can be accomplished by 
extending derived capabilities with 
copies of a master capability repre-
senting the same memory. On revo-
cation, the master capability and the 
memory it represents are both freed. 
On each access to memory using other 
copies of revoked capability, a verifi-
cation is first performed to determine 
whether the master capability is valid, 
followed by verification of the access 
right to memory. These two verifica-
tions can be conducted in parallel 
a nd be hardware accelerated [Fig-
ure 4(a)]. Another approach is to asso-
ciate blocks of memory and threads 
accessing memory with matching 
keys. Upon each memory access, keys 
are matched using hardware.5 If there 

FIGURE 4. Approaches to revocation. (a) Redirection. (b) Key-based revocation. 
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is a match, access is allowed, and if not, 
an exception is raised [Figure 4(b)] and 
communicated back to the applica-
tion. The application can rerequest the 
capabilities and reissue the access (if 
it still has permissions to the memory 
region), or it can signal a protection 
violation to the end user.

Implicit in lazy revocation are two 
important points: software needs to 
react to traps caused by overrevoca-
tion and reacquire underlying capa-
bilities with new keys, and a gen-
uine protection fault is likely to be 
caused by a bug or a malicious exploit 
attempt. A well-behaved application 
should not try to access memory after 
a revocation, so the protection mech-
anism is a backstop and hopefully is 
rarely invoked.

IMPLEMENTATION ASPECTS
Historically, the primary challenge 
in scaling capability-based systems 

was revocation. Deriving capabilities 
results in chains that need to be torn 
during revocation. This is costly in sin-
gle-node systems and unacceptable at 
the rack scale. The lazy approach we 
introduced addresses this challenge. 
Capabilities are invalidated, and verifi-
cation is conducted every time capabili-
ties are used. Memory-side accelerators 
allow verification at memory access 
speed. The performance of the CEP 
is affected by the number of capabili-
ties, which can be cached by the CEP if 
needed. Capability-based fine-grained 
memory protection fits well with pol-
icies for elastic scaling of memory 
regions, enabled by splitting and merg-
ing of capabilities and corresponding 
memory regions.

To extend trust among the nodes, 
we need to rely on a secure and scal-
able memory fabric that supports 
managing capabilities. New intercon-
nect standards, such as Gen-Z (https://

genzconsortium.org/), extend mem-
ory semantics across nodes within a 
rack and also provide basic support for 
copying capabilities around through 
privileged operations.

OTHER APPROACHES  
TO CAPABILITIES
There is a rich history of capabilities, 
which can be classified as hardware, 
OS, and language supported (see Table 1). 
Only hardware-supported fine gran-
ularity and persistency, for example, 
CAP, StarOS and IBM System/38 (see 
Levy3 for details). OS-supported, but 
not rack-scale, systems targeted clus-
ters (e.g., L4,6 KeyKOS,7 Barrelfish8). 
Language-supported approaches are 
more flexible but have lower perfor-
mance. They rely on objects within a 
single process, for example, low-fat 
pointers,9 SoftBound,10 and CCured.11 
Recently, vendors, such as Intel, intro-
duced limited support for fine-grained 

TABLE 1. Different approaches to capabilities.

Approach

Features

Example systems Distribution Persistency Revocation, GC Granularity HW/SW support

HW
ISA support

CAP, Plessey System 
250, StarOS, IBM/38, 
iAPX432, Hardbound, 
low-fat pointers HW, 
CODOMs, M-Machine, 
and CHERI

Single process 
except Plessey 
System 250, 
StarOS, and 
iAPX, which are 
multinode

No support 
in StarOS, 
Hardbound, low-
fat pointers HW, 
CODOMS, and 
CHERI

Revocation in 
IBM/38, CODOMS, 
M-Machine
GC in StarOS, and 
M-Machine 

Fine HW/SW, ISA,  
OS, microcode,  
and compiler

OS Mach, Chorus, 
Amoeba, KeyKOS, 
EROS, L4, Barrelfish, 
and Composite

Multinode clusters 
except for KeyKOS 
(multiprocess) and 
EROS, and  
L4 (1 node) 

Capability to pager 
(Mach, Chorus, L4), 
FS (Amoeba), and 
VAS (KeyKOS) 

Revocation: yes, 
except Amoeba 
and KeyKOS
GC: no, except L4 and 
Composite (ref cnt)

Page, objects, and 
exceptionally fine

OS support  
and MMU

Languages 
and fat 
pointers

E, Joe-E, Caja, 
SoftBound, CCured, 
low-fat pointers SW, 
and Cyclone

Single process No No revocation
GC optional

Objects Language 
runtime and 
compiler

HW: hardware; ref: reference; SW: software; cnt: count; FS: file system; GC: garbage collection. 
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APPLICATIONS AND USE CASES

T he Machine Research Program at Hewlett 
Packard Labs proposes a so-called memo-

ry-driven computing approach spanning from 
embedded through exascale computing.  Hewlett 
Packard Enterprise recently demonstrated a rack-
scale prototype of 160 TiB of memory attached 
to an optically connected memory semantics fab-
ric. This prototype crosses an interesting thresh-
old, offering significantly more memory than is 
addressable either by the physical addressing 
of industry standard architectures or the virtual 
addressing of OS kernels. Although this was 
designed as a testbed for hardware, firmware, and 
OS investigations, the prototype has also afforded 
the opportunity to explore applications of rack-
scale systems and how capabilities can enhance 
those applications. Two are briefly described here. 

PETA-SCALE TIME-VARYING GRAPH 
DATA STORES WITH MULTIPLE AC-
CESS ROLES
A huge variety of problems arising from the study 
of complex economic, ecologic, and biologic 
systems are most naturally represented as 
graphs. The efficient algorithms of graph theory 
can find hidden correlations and allow us to make 
inferences from incomplete data as long as we 
can efficiently manipulate both the graph and its 
associated metadata. This is where conventional 
scale-out systems are challenged, since the data 
distribution, caching, and prefetching algorithms 
can be rendered ineffective by the random nature 
of the underlying relationships. Even if care is 
taken to optimally partition a graph for a given 
access pattern, as the graph varies with time, 
the partitioning rapidly becomes inefficient. If 
the access pattern is random, the vast majority 
of the accesses are remote, thus preventing any 

effective use of locality. The memory-driven 
organization of the machine rack-scale infra-
structure allows us to hold graph and meta-
data in a single shared memory pool, allowing 
distributed applications to access them at a fine, 
byte-level granularity. The use of graph theory 
across a longitudinal data set naturally invites 
multiple access roles: analysis versus evolution 
of the graph either with or without the metadata. 
Capabilities enable enforcement of roles, which 
can survive and be revoked independent of the 
execution lifecycle of any particular process or the 
underlying OS.

HARDWARE/APPLICATION COMPO-
SITION WITH ACCESS TO DISAGGRE-
GATED PERSISTENT OBJECTS
There is an interesting intersection between 
capabilities and the emerging category of com-
posable hardware, which today involves com-
position of storage and networking with fixed, 
relatively stateless CPU and memory resources. 
Container-based application development and 
rack-scale infrastructure allow for the low-level 
commissioning of just the right hardware, inclu-
sive of accelerators and memory, for a particular 
container. Add in persistent objects in disaggre-
gated memory, inclusive of data, applications, 
libraries, and you can gain the ability to remove a 
majority of spin-up/spin-down time and replace 
virtualized input–output operations with much 
higher-performance-shared memory opera-
tions. Capabilities allow all of those fabric- 
attached memory accesses, both sequential and 
simultaneous, to be authenticated and protected 
against errors while still allowing immediate 
access to in-memory objects as soon as fabric 
connectivity is established.
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memory protection, such as MPX. For 
additional discussion on use cases, see 
“Applications and Use Cases.” 

We motivated the need for  
rack-scale capabilities as 
a consequence of increas-

ing memory capacity paired with fine-
grained (load/store) access to FAM. We 
described how rack-scale capabilities 
are evolving from traditional ISA- and 
OS-supported capabilities. We dis-
cussed the CEP as an alternative (or 
supplement) to ISA support. Finally, we 
described capability revocation as a key 
challenge and presented two solutions 
for hardware support for revocation.

Many challenges remain for a future 
work on rack-scale capabilities. ISA 

support is not extensible to the rack 
scale. Memory mapped from the FAM 
on one node may end up at different vir-
tual addresses on other nodes. Self-ref-
erenceable structures or sophisticated 
ways of translating from virtual to phys-
ical to rack-scale address spaces become 
necessary. ISA support for capabilities 
is a long-term evolution, requiring more 
than five years to adoption. Providing 
similar functionality closer to FAM offers 
a faster pace of evolution and a more 
scalable and reliable solution. In addi-
tion to hardware, changes to the system 
software are required to support legacy 
applications. New classes of applications 
will evolve to fully utilize the benefits of 
memory-driven computing: load/store 
semantics and latency in accessing rack-
scale fabric-attached NVM.12 

We see many opportunities for 
deeper integration of hardware archi-
tecture, OSs, and programming mod-
els. The key technical question is how 
to balance the support across these 
three levels to achieve the desired per-
formance, security, and flexibility.  
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