
52 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E

COVER FEATURE HOLDING US TOGETHER

Kirk M. Bresniker and Paolo Faraboschi, Hewlett Packard Labs

Avi Mendelson, Technion

Dejan Milojicic, Hewlett Packard Labs

Timothy Roscoe, ETH Zurich

Robert N.M. Watson, University of Cambridge

Rack-scale systems with large, shared, disaggregated,

and persistent memory need solid protection and

authorization techniques. Our solution uses a memory-

side capability enforcement processor that gates memory

accesses through extended capabilities, enables fine-

grained access control beyond a single address space,

and minimally disrupts the programming model.

A t the crossover point between technology
adoption curves (such as persistent mem-
ory, rack-scale disaggregate memory, and
memory semantics fabrics), it is vital to

understand the benefits of defying conventions. In
this article, we examine the ramifications of persistent
fabric-attached memories (FAMs) at the rack scale and
how approaches that predate memory paging, such as

capabilities, could enable a robust and scalable protec-
tion mechanism.

Memory has always been considered a scarce resource
that needs to be shared among multiple programs. Since
the inception of virtual memory in the 1960s,1 operating
systems (OSs) have overcome the limitations of small
physical memory by a variety of mechanisms to give
users and programs the perception of unlimited mem-
ory. Virtual memory was—and remains today—a pow-
erful mechanism with which to optimize memory allo-
cation, simplify addressing, manage fragmentation, and

Digital Object Identifier 10.1109/MC.2018.2888769
Date of publication: 22 March 2019

Rack-Scale Capabilities:
Fine-Grained Protection
for Large-Scale Memories

 F E B R U A R Y 2 0 1 9 53

allow oversubscription by means of
paging out to slower media and pag-
ing in when needed. Over time, these
operations have become so important
that hardware support has appeared
in all modern processors in the form of
caches of the virtual memory tables, or
translation look-aside buffers (TLBs).

Once the OS and hardware manage
virtual memory as fixed size pages and
include all of the necessary structures
for virtual-to-physical address transla-
tion, it becomes natural to extend these
tables to capture related concepts, such
as access protection. For security, pri-
vacy, and error-containment reasons,
not all programs are allowed to access
all memory pages. Access-right infor-
mation (typically read, write, or exe-
cute privileges) is stored as metadata
associated with a page, cached in the
TLB, and checked at page granular-
ity. This arrangement makes the pro-
tection check fast because it is part of
the translation process of each mem-
ory-access instruction. It also enables
precise exceptions to generate accurate
notifications about the nature of the
protection violation. This is import-
ant to implement functionality, such
as on-demand paging, shared libraries,
or copy-on-write, and it requires the
ability to precisely restart a faulting
memory instruction after an exception
occurs. However, it is a compromise
because programs would naturally like
to expose a different, often finer, gran-
ularity protection, possibly at the indi-
vidual-object level, and not be tied to
an arbitrary page size.

Page-level protection also creates
the opportunity for malicious ex-
ploits, such as buffer and stack over-
f lows, when multiple tenants share
a single page or execute code in a
shared library. Because all addresses
within a page inherit the same pro-

tection, privileged execution of code
may be achieved simply by gaining ac-
cess to a piece of the memory address
space. For small page sizes this has
(historically) been considered an ac-
ceptable compromise across security,
performance, and hardware complex-
ity considerations.

However, the technology has sub-
stantially changed. Individual com-
puters can afford terabytes of physi-
cal memory, and rack-scale systems
federating hundreds of elements are
approaching petabytes. At this scale,
organizing memory in kilobyte-sized
pages requires billions of pages, and
the overhead to manage the map-
pings does not scale, as page tables and
page-table walks overflow TLBs and
caches. At the same time, this abun-
dance of memory removes the orig-
inal motivation for virtual memory
(paging to disk), and most programs
keep all of the data in memory because
of performance issues. As a conse-
quence, the trend is to shift toward large
(1–2 MiB) or huge (1–4 GiB) page sizes,
so that applications can allocate most
of their working set right away, allow-
ing page-table overhead to scale with
memory-size growth and move the OS
overhead out of the way.

Unfortunately, larger pages increase
security risks and can expose the
page to errors (or malicious attacks)
because any address within a page can
be accessed without additional fine-
grained control. More importantly, the
underlying problem comes from the
bundling of the two key memory con-
cepts, translation and protection, in the
same page structure. This is becoming
a primary cause of tension in the OS:
the needs of a large translation unit
and a small protection granularity are
fundamentally incompatible, and we
need a different approach. In addition,

certain workloads experience huge
performance benefits from superpages,
but others suffer—in practice, the shift
is toward greater flexibility in the size
of translation units within the con-
straints of different page sizes.2

Paging was not the only memory
protection concept developed in the
1960s. Segmentation and capabili-
ties3 are two alternative approaches
that support variable-size memory
units, from a single byte to the whole
address space. Both approaches can
coexist with paging, and, for a while,
some processors supported segmen-
tation, while other systems sup-
ported capabilities.

Capabilities are particularly rel-
evant to this discussion: they are
unforgeable tokens of authority used
to protect memory at a fine granulari-
ty, down to a single-byte location. For
a full implementation, they require
processor instruction set architecture
(ISA) support to keep extra information
(hidden to application programming)
associated with memory addresses
(i.e., pointers) stored in registers and
memory. A capability-enhanced CPU
can check this information upon every
individual memory access to ensure
that the access is allowed. The check
can be extended to manipulate the ca-
pabilities themselves, such as secure-
ly storing (and retrieving) them to
memory, while preventing access from
unauthorized code. ISA-supported ca-
pabilities can be passed in user space
without performance costs, but they
require invasive hardware changes to
the memory hierarchy, the microarchi-
tecture (e.g., extending the register file
and caches to store the metadata), and
the ISA itself. The software stack also
needs to change to maintain and uti-
lize capabilities effectively when describ-
ing data and code structures.

HOLDING US TOGETHER

54 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

CHERI CAPABILITIES
Capability Hardware Enhanced RISC
Instructions (CHERI) (www.cheri-cpu
.org) is an example of an ISA-supported
capability implemented as extended,
or safe, pointers4 compatible with
off-the-shelf software. Simple pointers
are references to memory locations,
and they contain (virtual) addresses.
Capabilities are extended pointers that
contain base, offset, length, and protec-
tion bits (Figure 1). Length defines the
address range that the capability can
access, counting from the base address.
Offset represents the individual mem-
ory access target (the virtual address to
access memory through the capability
is base plus offset). The protection bits
grant read, write, and execute permis-
sions. A process owning a capability can
derive other capabilities with reduced
rights, in terms of space or access. This
allows a process to subdivide a capabil-
ity to provide access to only a subset of
the initial address range, or to remove
rights, such as execute or write (main-
taining the monotonicity of capability
derivation). The software tool chain
(compiler and linker) and programmers
can selectively manage access to mem-
ory regions by passing to other pro-
grams capabilities that refer to a region
subset or limited access rights. For
example, a memory manager can hand
out access to parts of the memory buffer
to clients, or a server can provide write

access to only a single writer, while
allowing other clients only read access.

Supporting capabilities requires
changing the ISA and microarchitec-
ture. CHERI extends capability reg-
isters to access memory and adds the
supporting enforcement logic. Enforce-
ment compares the contents of capabil-
ity registers with the attempted access
after the capability has been manipu-
lated through typical pointer arithme-
tic operations. Capabilities are enforced
on data access to support passive data
checks and instruction execution (e.g.,
procedure call/return, jumps) for active
objects and compartmentalization.
CHERI also adds privileged instructions
to store/load to/from memory using
capabilities. To prevent processes from
forging capabilities stored in memory,
a tag bit is maintained for each capa-
bility in memory, which is propagated
through caches and the TLB into
the capability registers. Any attempt
to modify a memory location contain-
ing capabilities by unauthorized code
clears the capability bit and effectively
invalidates the capability, prevent-
ing it from accessing data. The tag
enforces noncorruption and ensures
valid provenance.

CHERI capabilities double the size
of pointers from 64 to 128 bits (plus one
tag bit). Using capabilities on a single
node requires small changes to soft-
ware and limited changes to the OS.

Most changes can be hidden in librar-
ies or directly implemented by the
compiler and tool chain.

CAPABILITY ENFORCEMENT
ACCELERATORS
CPUs and ISAs are evolving slowly.
It takes several years for a new ISA
feature to be implemented and even
longer to reach the market, be sup-
ported by an industry-standard OS,
and, finally, be adopted by application
developers. ISA-supported capabil-
ities are no exception. Moving some
of the ISA support into a separate sys-
tem (outside the CPU) could lower the
adoption barrier.

Furthermore, ISA-supported capa-
bilities exist within a single virtual
address space. Sharing across address
spaces (or persistent memory) requires
additional OS support and incurs per-
formance costs in crossing OS bound-
aries. This eliminates the perfor-
mance advantage of ISA-supported
capabilities in the user space when
dealing with multiple processes or OSs
at the rack scale.

The alternative to CPU-supported
capabilities is a dedicated external
component. In this case, we propose a
memory-side capability-enforcement
processor (CEP), a hardware controller
(also called an accelerator) interposed
on the load/store path between the
CPU and the memory. The CEP acts as

FIGURE 1. The format of CHERI capabilities compared with a simple pointer and (micro)architecture changes. IF: instruction fetch; ID:
instruction decode; EX: execute; MEM: memory access; ALU: arithmetic logic unit.

Memory

Base Offset Length Bits

Region
End of Region

Offset Into Region

PointerPointer

Capability

Hidden Bit Indicating
Capability

PPC

PCC

Instruction
Memory

Capability
Registers

ALU Data
Memory

General-
Purpose
Registers

IF/ID ID/EX EX/MEM

 F E B R U A R Y 2 0 1 9 55

a secure memory controller, taking the
responsibility of guarding the access
to the memory it controls through a
capability system. The CPU can use it
by issuing specific CEP instructions to
access memory or to manipulate the
CEP-stored capabilities. In its straight-
forward implementation, the CEP can
be used to replace the ISA support for
capabilities, with minimal changes to
the rest of the system. However, some
functionality, such as compartmental-
ization, may require the CEP to rely on
OS support. The CEP also provides sup-
port for capabilities not covered by the
ISA capability model, such as memory
sharing (intra- and internode) and per-
sistent memory.

Figure 2(a) shows how ISA-supported
capabilities enable secure access within
individual virtual address space. Appli-
cations can share memory, but capabili-
ties cannot be stored in shared memory,
nor can they be securely used to access

shared memory. An ISA-based system
cannot enforce capabilities across dif-
ferent virtual address spaces or differ-
ent OS instances. The CEP overcomes
these limitations, because it operates
memory-side on the physical addresses,
rather than virtual addresses, and
introduces handles in the user space
[Figure 2(b)]. The CEP tracks the han-
dles and checks them when data are
accessed so that only allowed processes
can proceed. The CEP [Figure 2(c)] can
also supplement ISA capability enforce-
ment across virtual address spaces.

RACK-SCALE SYSTEMS
AND CAPABILITIES
Enhancements in optical intercon-
nects, memory semantics protocols,
and the emergence of fabric-attached
nonvolatile memory (NVM) are mak-
ing rack-scale memory a reality. This
enables the individual nodes in a rack-
scale system to access all memory

through a familiar load/store interface,
with performance comparable to that of
local memory access. The abundance of
globally addressable memory enables
new in-memory algorithms and non-
partitioned data structures that are
impractical on traditional clusters due
to performance, power, and cost lim-
itations. Unfortunately, it also further
widens the chasm between protection
and translation, making the case for
capabilities even stronger.

The concept of capabilities needs to
evolve to support memory in rack-scale
systems with many nodes running
independent OSs. When rack-scale
systems also include shared NVM, as
some emerging paradigms combining
memory and storage advocate, capabil-
ities need to evolve accordingly.

Rack-scale systems consist of mul-
tiple nodes, each running its own OS
instance in support of the scale-out
model. They also have a stronger trust

FIGURE 2. The CEP. (a) ISA capabilities allow fine-grained protection within a single virtual address space. (b) Transition: the CEP fine-
grained protection uses handles across the physical address space. (c) Vision: the CEP supplements the ISA in fine-grained protection
across VAS/PAS and NVM. DRAM: dynamic random-access memory; NVRAM: nonvolatile random-access memory; VAS: virtual address
space; PAS: physical address space; MMU: memory management unit; CEP: capability enforcement processor.

OS

MMU

CPU

C
A

P
 IS

A

PAS

M

CP

S

U

C
A

P
 IS

A

MU

PU

…….

Tagged CAPs

App
App

CEP DRAMNVRAM

OS

MMU

CPU

C
A

P
 IS

A

PAS

VAS0 VAS0 VAS0VASn VASn VASn
M U

U

C
A

P
 IS

A

…….

Tagged CAPs

App
App

OS

MMU

PAS

M

S

MU

…….

Tagged CAPs

App
App

CEP DRAMNVRAM

VAS
Local Caps/Data

VAS
Local Caps/Data Caps/Data

Caps/DataHandles/Data
Handles/Data

CPU

(a) (b) (c)

HOLDING US TOGETHER

56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

model—if a single OS is compromised,
the node boundaries prevent propa-
gation to other nodes. In a distributed
multi-OS environment, revocation of
capabilities becomes a complex task
because we can no longer rely on a
single OS (and single execution hard-
ware) to have full control of a capabil-
ity. Managing distributed capabilities
requires the careful interaction of
hardware support, OSs, and the appli-
cation runtime.

An interesting programming para-
digm of rack-scale systems organizes
applications into microservices and
containers. They benefit from fine-
grained protection because they can
be packaged much more densely than
what a given page size allows. In addi-
tion, they benefit from both code and
data protection by selectively allow-
ing which components can be invoked
from other components. Delegation
in the case of microservices is a very
powerful programming approach to

selectively enable access to individual
components of the data structure at
fine granularity.

In this environment, threats can
come from a compromised or buggy
OS, application, or any other piece of
system software. The major concern is
with unauthorized writing to the mem-
ory. When memory is persistent and
not cleared after reboot, the threats/
bugs are exacerbated because contents
may persist beyond the lifetime of the
OS. To address these threats, we lever-
age different security models. ISA sup-
port deals with the individual virtual
address space; OS capabilities enforce a
node-level trust model; and at the rack-
wide scale, we leverage the TOR man-
ager, secure enclaves, and the network-
ing components that enable access to
the FAM.

The CEP model naturally expands
to cross-node capabilities in rack-scale
systems. Because the CEP resides close
to memory, it is effective in enforcing

policies and management of the data
access from multiple nodes, following
the self-protecting memory principle.
Although the performance implica-
tions of checking accesses for very fast
(node-local) memory would be severe,
they become tolerable for slower devices
(NVM byte-addressable technologies)
or when the accesses traverse a multi-
hop fabric (FAM at the rack scale).

Another way to look at this is from
the perspective of address spaces.
ISA-supported capabilities take a
virtual-address-space view [Figure 3(a),
left], and an OS takes the node view
[Figure 3(a), right]; the rack-wide view
addresses the rack scale because any
part of the NVM could be mapped into a
single node. Because of the size of FAM
and the distance from each CPU, we can
offload some of the capability enforce-
ment from the CPU into accelerators
closer to FAM [Figure 3(a), center].

Figure 3(b) presents a sample rack-
scale configuration that uses FAM

N
od

e
N

N
od

e
0

SoC

SoC

Local DRAM

Local DRAM

N
et

w
or

k

SoC

SoC

Local DRAM

Local DRAM

Rack-Wide
Persistent
Memory Pool

NVM

NVM

NVM

NVM

Global
Persistent
Capability

Global
Persistent
Data

Local Copy of
Global Capability

Local Copy of
Global Capability

OS

CPU…….

C
A

P
 IS

A

OS

CPU

C
A

P
 IS

A

MMUMMU

PAS

VAS00 VAS0n VASn0 VASnn
……. …….

CEP CEP

Tagged CAPs

AppApp AppApp

ISA-Enforcement CEP-Enforcement
OS-Enforcement

DRAMNVRAM DRAMNVRAM

(a) (b)

FIGURE 3. Rack-scale capabilities. (a) Approaches to capability enforcement in rack-scale systems with fabric-attached memory: ISA-,
OS-, and rack-supported. (b) Capabilities in a fabric-attached memory. SoC: system on chip.

 F E B R U A R Y 2 0 1 9 57

pooled and accessible by all nodes,
as some approaches advocate. Simi-
lar considerations apply if rack-scale
memory is distributed and accessi-
ble by more traditional mechanisms,
such as RDMA remote direct memory
access or NVM express over fabrics.
Adapting capabilities to the rack-scale
environment is critical to reliable soft-
ware development in that environ-
ment, but it also requires extending
our notion of the model and imple-
mentation of the underlying capabilities.
There is always a lowest layer of the
system software (kernel, supervisor,
hypervisor, whatever runs on the TOR
control processor, and so on) that mul-
tiplexes the machine, and this is where
the software that controls the lowest
level of capabilities lives, the rack-
wide capability management system.
Anything else (virtual machine, con-
tainers, bare-metal OSs on a secure
partition of the hardware) are above
this layer.

Compared with single address-
space capabilities (such as CHERI),
which live and die with the creation
and termination of a process, capa-
bilities in a rack-scale system are long
lived. They can outlive not only the
process that created them or was using
them but also an OS reboot or even
reinstall. Capabilities can be stored in
the memory of other nodes or in glob-
ally shared NVM that is saved across
OS reboots. There is a temporal aspect
of capability persistence that does not
exist with ephemeral capabilities (local
capabilities that live in local memory
and a single process). In addition, when
a capability is stored in persistent data,
the capability itself has to be persistent
for the system to be consistent. Because
the notion of persistence is always tied
to a certain class of failures, capabili-
ties can be considered persistent when

they are stored in nonvolatile device or
anywhere outside the failure domain of
the process that created them. Capabil-
ities derived from a persistent capabil-
ity can be ephemeral [e.g., they live in
memory that disappears with the pro-
cess, like local dynamic random-ac-
cess memory (DRAM)], but the master
capability needs to be persistent. The
opposite is not true: persistent capa-
bilities cannot point to process-local

(volatile) memory; only ephemeral
capabilities can.

Local pointer bugs may corrupt
local data within a process, but the
corruption is limited to the process
lifespan. With NVM, pointer bugs may
persist in memory indefinitely, lead-
ing to corruption, regardless of pro-
gram restart or system reboot, mak-
ing fine-grained pointer and memory
protection essential to the success of
NVM-based systems for nonmanaged
languages (and for the runtimes of
managed languages, frequently imple-
mented in C/C++).

Unlike local capabilities, rack-scale
capabilities can be named and accessed
globally from any node, not just from
the node where they were created. To
accomplish this, we record the creation
source node in the capability, so that
accessing memory can be appropri-
ately directed. Similarly to persistence,
a capability pointing to global data has

to be global [Figure 3(b)]. When global
capabilities are passed to other nodes,
revocation complications arise.

Rack-scale systems typically in -
volve additional levels of memory
translation beyond the processor’s
memory management unit. In addi-
tion to virtual (unique to a process) and
physical (unique to a node) addresses,
memory locations have a unique fab-
ric address. These can be made of node

identifier and local addresses (for leg-
acy networks) or built in the protocol
itself (for new interconnects, such as
Gen-Z). Regardless of the mechanism,
fabric addresses are larger than indi-
vidual node addresses, and, ideally,
one would like to have a direct trans-
lation from 64-b virtual addresses to
unique fabric addresses. However,
when using ISA load/store instruc-
tions, the smaller physical address
(lower than 52 bits today) gets in the
way, causing a disconnect between
the CPU and memory, resulting in
the need for memory-side translation
support (which makes a CEP approach
even more appealing).

Pursuing this kind of work requires
the intersection of many areas of com-
puter science. We six coauthors come
from diverse and complementary back-
grounds: microarchitecture, architecture,
distributed systems, system software, and
security. This makes us ideal collaborators

CAPABILITIES CAN BE STORED IN THE
MEMORY OF OTHER NODES OR IN

GLOBALLY SHARED NVM THAT IS SAVED
ACROSS OS REBOOTS.

HOLDING US TOGETHER

58 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

and ensures that all of the aspects of the
design are discussed and covered.

CAPABILITY REVOCATION
Being unforgeable, capabilities can be
passed around to access resources (i.e.,
memory). In a rack-scale system, the
other processes can be microservices
that execute on other nodes through

a distributed application program-
ming interface. This creates an inter-
esting complication: once the owner
releases a resource, all of the capabili-
ties representing that resource need to
be revoked. Otherwise, a subsequent
access will result in an error that would
be difficult to debug and would require
complicated client-side error handling

schemes. It would be as if someone
decided to change the lock to a shared
closet, without telling everyone with a
key that the key no longer works.

One-sided revocation is nontrivial in
rack-scale systems because capabilities
can be dispersed, and it may take time,
and a complicated distributed algo-
rithm, to reach revocation closure. For
nonarchitectural capabilities, the OS
maintains data structures that track
trees of derived capabilities, which are
then parsed to revoke all derived capa-
bilities. Even in a single system, revo-
cation represents a complex activity
that can cause performance penalties
and is nontrivial to implement effi-
ciently. In CHERI, the locations of capa-
bilities can be tracked with assistance
from the paging mechanism, but this
requires sweeping through the mem-
ory with suitable atomicity properties.
In a rack-scale system, with distributed
state, revocation is extremely complex
and must avoid the need for global
operations to ensure adequate scalabil-
ity and reliability.

An alternative is lazy revoca-
tion, which can be accomplished by
extending derived capabilities with
copies of a master capability repre-
senting the same memory. On revo-
cation, the master capability and the
memory it represents are both freed.
On each access to memory using other
copies of revoked capability, a verifi-
cation is first performed to determine
whether the master capability is valid,
followed by verification of the access
right to memory. These two verifica-
tions can be conducted in parallel
a nd be hardware accelerated [Fig-
ure 4(a)]. Another approach is to asso-
ciate blocks of memory and threads
accessing memory with matching
keys. Upon each memory access, keys
are matched using hardware.5 If there

FIGURE 4. Approaches to revocation. (a) Redirection. (b) Key-based revocation.

Memory Block

Thread 1

Thread 2

Block
Protection Key

Thread 3

Key Matching

1

2

3

CPU Side

FAM Side

Execution
Protection Key1

Execution
Protection Key2

Execution
Protection Key3

Memory Block
Memory Block

Local Cap Sealed Master Handle

1) Is master valid?
 Are bounds OK?

2) Is cap valid?

3) Issue Memory Request
Local Node

Master Cap

Global
Persistent
Memory

(a)

(b)

 F E B R U A R Y 2 0 1 9 59

is a match, access is allowed, and if not,
an exception is raised [Figure 4(b)] and
communicated back to the applica-
tion. The application can rerequest the
capabilities and reissue the access (if
it still has permissions to the memory
region), or it can signal a protection
violation to the end user.

Implicit in lazy revocation are two
important points: software needs to
react to traps caused by overrevoca-
tion and reacquire underlying capa-
bilities with new keys, and a gen-
uine protection fault is likely to be
caused by a bug or a malicious exploit
attempt. A well-behaved application
should not try to access memory after
a revocation, so the protection mech-
anism is a backstop and hopefully is
rarely invoked.

IMPLEMENTATION ASPECTS
Historically, the primary challenge
in scaling capability-based systems

was revocation. Deriving capabilities
results in chains that need to be torn
during revocation. This is costly in sin-
gle-node systems and unacceptable at
the rack scale. The lazy approach we
introduced addresses this challenge.
Capabilities are invalidated, and verifi-
cation is conducted every time capabili-
ties are used. Memory-side accelerators
allow verification at memory access
speed. The performance of the CEP
is affected by the number of capabili-
ties, which can be cached by the CEP if
needed. Capability-based fine-grained
memory protection fits well with pol-
icies for elastic scaling of memory
regions, enabled by splitting and merg-
ing of capabilities and corresponding
memory regions.

To extend trust among the nodes,
we need to rely on a secure and scal-
able memory fabric that supports
managing capabilities. New intercon-
nect standards, such as Gen-Z (https://

genzconsortium.org/), extend mem-
ory semantics across nodes within a
rack and also provide basic support for
copying capabilities around through
privileged operations.

OTHER APPROACHES
TO CAPABILITIES
There is a rich history of capabilities,
which can be classified as hardware,
OS, and language supported (see Table 1).
Only hardware-supported fine gran-
ularity and persistency, for example,
CAP, StarOS and IBM System/38 (see
Levy3 for details). OS-supported, but
not rack-scale, systems targeted clus-
ters (e.g., L4,6 KeyKOS,7 Barrelfish8).
Language-supported approaches are
more flexible but have lower perfor-
mance. They rely on objects within a
single process, for example, low-fat
pointers,9 SoftBound,10 and CCured.11
Recently, vendors, such as Intel, intro-
duced limited support for fine-grained

TABLE 1. Different approaches to capabilities.

Approach

Features

Example systems Distribution Persistency Revocation, GC Granularity HW/SW support

HW
ISA support

CAP, Plessey System
250, StarOS, IBM/38,
iAPX432, Hardbound,
low-fat pointers HW,
CODOMs, M-Machine,
and CHERI

Single process
except Plessey
System 250,
StarOS, and
iAPX, which are
multinode

No support
in StarOS,
Hardbound, low-
fat pointers HW,
CODOMS, and
CHERI

Revocation in
IBM/38, CODOMS,
M-Machine
GC in StarOS, and
M-Machine

Fine HW/SW, ISA,
OS, microcode,
and compiler

OS Mach, Chorus,
Amoeba, KeyKOS,
EROS, L4, Barrelfish,
and Composite

Multinode clusters
except for KeyKOS
(multiprocess) and
EROS, and
L4 (1 node)

Capability to pager
(Mach, Chorus, L4),
FS (Amoeba), and
VAS (KeyKOS)

Revocation: yes,
except Amoeba
and KeyKOS
GC: no, except L4 and
Composite (ref cnt)

Page, objects, and
exceptionally fine

OS support
and MMU

Languages
and fat
pointers

E, Joe-E, Caja,
SoftBound, CCured,
low-fat pointers SW,
and Cyclone

Single process No No revocation
GC optional

Objects Language
runtime and
compiler

HW: hardware; ref: reference; SW: software; cnt: count; FS: file system; GC: garbage collection.

HOLDING US TOGETHER

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

APPLICATIONS AND USE CASES

T he Machine Research Program at Hewlett
Packard Labs proposes a so-called memo-

ry-driven computing approach spanning from
embedded through exascale computing. Hewlett
Packard Enterprise recently demonstrated a rack-
scale prototype of 160 TiB of memory attached
to an optically connected memory semantics fab-
ric. This prototype crosses an interesting thresh-
old, offering significantly more memory than is
addressable either by the physical addressing
of industry standard architectures or the virtual
addressing of OS kernels. Although this was
designed as a testbed for hardware, firmware, and
OS investigations, the prototype has also afforded
the opportunity to explore applications of rack-
scale systems and how capabilities can enhance
those applications. Two are briefly described here.

PETA-SCALE TIME-VARYING GRAPH
DATA STORES WITH MULTIPLE AC-
CESS ROLES
A huge variety of problems arising from the study
of complex economic, ecologic, and biologic
systems are most naturally represented as
graphs. The efficient algorithms of graph theory
can find hidden correlations and allow us to make
inferences from incomplete data as long as we
can efficiently manipulate both the graph and its
associated metadata. This is where conventional
scale-out systems are challenged, since the data
distribution, caching, and prefetching algorithms
can be rendered ineffective by the random nature
of the underlying relationships. Even if care is
taken to optimally partition a graph for a given
access pattern, as the graph varies with time,
the partitioning rapidly becomes inefficient. If
the access pattern is random, the vast majority
of the accesses are remote, thus preventing any

effective use of locality. The memory-driven
organization of the machine rack-scale infra-
structure allows us to hold graph and meta-
data in a single shared memory pool, allowing
distributed applications to access them at a fine,
byte-level granularity. The use of graph theory
across a longitudinal data set naturally invites
multiple access roles: analysis versus evolution
of the graph either with or without the metadata.
Capabilities enable enforcement of roles, which
can survive and be revoked independent of the
execution lifecycle of any particular process or the
underlying OS.

HARDWARE/APPLICATION COMPO-
SITION WITH ACCESS TO DISAGGRE-
GATED PERSISTENT OBJECTS
There is an interesting intersection between
capabilities and the emerging category of com-
posable hardware, which today involves com-
position of storage and networking with fixed,
relatively stateless CPU and memory resources.
Container-based application development and
rack-scale infrastructure allow for the low-level
commissioning of just the right hardware, inclu-
sive of accelerators and memory, for a particular
container. Add in persistent objects in disaggre-
gated memory, inclusive of data, applications,
libraries, and you can gain the ability to remove a
majority of spin-up/spin-down time and replace
virtualized input–output operations with much
higher-performance-shared memory opera-
tions. Capabilities allow all of those fabric-
attached memory accesses, both sequential and
simultaneous, to be authenticated and protected
against errors while still allowing immediate
access to in-memory objects as soon as fabric
connectivity is established.

 F E B R U A R Y 2 0 1 9 61

memory protection, such as MPX. For
additional discussion on use cases, see
“Applications and Use Cases.”

We motivated the need for
rack-scale capabilities as
a consequence of increas-

ing memory capacity paired with fine-
grained (load/store) access to FAM. We
described how rack-scale capabilities
are evolving from traditional ISA- and
OS-supported capabilities. We dis-
cussed the CEP as an alternative (or
supplement) to ISA support. Finally, we
described capability revocation as a key
challenge and presented two solutions
for hardware support for revocation.

Many challenges remain for a future
work on rack-scale capabilities. ISA

support is not extensible to the rack
scale. Memory mapped from the FAM
on one node may end up at different vir-
tual addresses on other nodes. Self-ref-
erenceable structures or sophisticated
ways of translating from virtual to phys-
ical to rack-scale address spaces become
necessary. ISA support for capabilities
is a long-term evolution, requiring more
than five years to adoption. Providing
similar functionality closer to FAM offers
a faster pace of evolution and a more
scalable and reliable solution. In addi-
tion to hardware, changes to the system
software are required to support legacy
applications. New classes of applications
will evolve to fully utilize the benefits of
memory-driven computing: load/store
semantics and latency in accessing rack-
scale fabric-attached NVM.12

We see many opportunities for
deeper integration of hardware archi-
tecture, OSs, and programming mod-
els. The key technical question is how
to balance the support across these
three levels to achieve the desired per-
formance, security, and flexibility.

REFERENCES
1. F. J. Corbato and V. A. Vyssotsky,

“Introduction and overview of
the Multics system,” in Proc. Fall
Joint Computer Conference (AFIPS ’65).
New York, 1965, pp. 185–196.

2. D. Milojicic and T. Roscoe, “Outlook
on operating systems,” IEEE Comput.,
vol. 49, no. 1, pp. 43–51, Jan. 2016. doi:
10.1109/MC.2016.19.

3. H. M. Levy, Capability-Based
Computer Systems. Newton, MA:

ABOUT THE AUTHORS
KIRK M. BRESNIKER is a fellow and chief architect of sys-
tems research at Hewlett Packard Labs. His research inter-
ests include novel hardware and software system designs.
Bresniker received a B.S. in electrical engineering from Santa
Clara University. He is a Senior Member of the IEEE. Contact
him at kirk.bresniker@hpe.com.

PAOLO FARABOSCHI is a fellow at Hewlett Packard Labs.
His research interests include intersection of architecture
and software. Faraboschi received a Ph.D. from the Univer-
sity of Genoa, Italy. He is a Fellow of the IEEE. Contact him at
paolo.faraboschi@hpe.com.

AVI MENDELSON is a professor of computer science and electri-
cal engineering at Technion. He earned his Ph.D. from the Univer-
sity of Massachusetts at Amherst. His research interests include
computer architecture, operating systems, reliability, cloud com-
puting, and high-performance computing. He is a Fellow of the
IEEE. Contact him at avi.mendelson@tce.technion.ac.il.

DEJAN MILOJICIC is a distinguished technologist at Hew-
lett Packard Labs. His research interests include operating
systems, distributed systems, and systems management.
Milojicic received a Ph.D. from the University of Kaiser-
slautern. He is a Fellow of the IEEE and was the 2014 IEEE
Computer Society president. Contact him at dejan.milojicic
@hpe.com.

TIMOTHY ROSCOE is a professor of computer science at
ETH Zurich. His research interests include networks, oper-
ating systems, and distributed systems. Roscoe received a
Ph.D. from the University of Cambridge. Contact him at
timothy.roscoe@inf.ethz.ch.

ROBERT N.M. WATSON is a university senior lecturer at the
University of Cambridge Computer Laboratory. He received
a Ph.D. from the University of Cambridge. Contact him at
robert.watson@cl.cam.ac.uk.

HOLDING US TOGETHER

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

Butterworth-Heinemann,
1984.

4. R. N. M. Watson et al. “CHERI: A
Hybrid Capability-System Architec-
ture for Scalable Software Compart-
mentalization,” in Proc. 36th IEEE
Symp. Security and Privacy, May 2015,
pp. 20–37.

5. R. Acherman, C. Dalton, P. Farabos-
chi, M. Hoffmann, D. Milojicic, and
G. Ndu, “Separating translation from
protection in address spaces with
dynamic remapping,” in Proc. 16th
Workshop Hot Topics in Operating
Systems (HotOS ’17), 2017, 118–124.

6. J. Liedtke, “On microkernel con-
struction,” in Proc. 15th ACM Symp.
Operating System Principles, Copper
Mountain Resort, CO, Dec. 1995,
pp. 237–250.

7. N. Hardy, “KeyKOS Architec-
ture,” SIGOPS Operating Syst. Rev.,
vol. 19, no. 4, pp. 8–25, 1985. doi:
10.1145/858336.858337.

8. A. Baumann, P. Barham, P.-E.
Dagand, T. Harris, R. Isaacs, and S.
Peter, “The multikernel: A new OS
architecture for scalable multicore
systems,” in Proc. ACM 22nd Symp.
Operating Systems Principles, Big Sky,
MT, 2009, pp. 29–44.

9. A. Kwon, U. Dhawan, J. M. Smith, T.
F. Knight, Jr., and A. DeHon, “Low-
fat pointers: Compact encoding and
efficient gate-level implementation
of fat pointers for spatial safety and
capability-based security,” in Proc.
2013 ACM SIGSAC Conf. Computer
and Communications Security, Ber-
lin, Germany, 2013, pp. 721–732.

10. S. Nagarakatte, J. Zhao, M. M. K.
Martin, and S. Zdancewic, “Soft-
Bound: Highly compatible and
complete spatial memory safety for
C,” in Proc. 30th ACM SIGPLAN Conf.
Programming Language Design and
Implementation, New York, NY, 2009,
pp. 245–258.

11. G. C. Necula, S. McPeak, and
W. Weimer, “CCured: Typesafe
retrofitting of legacy code,”
ACM SIGPLAN Notices, vol. 37,
no. 1, pp. 128–139, 2002. doi:
10.1145/565816.503286.

12. P. Faraboschi, K. Keeton, T. Marsland,
and D. Milojicic, “Beyond proces-
sor-centric operating systems,” in
Proc. 15th Workshop on Hot Topics in
Operating Systems (HotOS’15), Kar-
tause Ittingen, Switzerland, 2015.

From the analytical engine to the supercomputer,
from Pascal to von Neumann, from punched
cards to CD-ROMs—IEEE Annals of the History
of Computing covers the breadth of computer
history. � e quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history activities,
and international conferences.

www.computer.org/annals
Digital Object Identifier 10.1109/MC.2019.2901913

