
30 Seconds is Not Enough!
A Study of Operating System Timer Usage

Simon Peter, Andrew Baumann, Timothy Roscoe
Networks and Operating Systems Group, ETH Zurich, Switzerland

{speter,andrewb,troscoe}@inf.ethz.ch

Paul Barham, Rebecca Isaacs
Microsoft Research, Cambridge, UK

{pbar,risaacs}@microsoft.com

ABSTRACT
The basic system timer facilities used by applications and OS ker-
nels for scheduling timeouts and periodic activities have remained
largely unchanged for decades, while hardware architectures and
application loads have changed radically. This raises concerns with
CPU overhead, power management and application responsiveness.

In this paper we study how kernel timers are used in the Linux
and Vista kernels, and the instrumentation challenges and trade-
offs inherent in conducting such a study. We show how the same
timer facilities serve at least five distinct purposes, and examine
their performance characteristics under a selection of application
workloads. We show that many timer parameters supplied by ap-
plication and kernel programmers are somewhat arbitrary, and ex-
amine the potential benefit of adaptive timeouts.

We also discuss the further implications of our results, both for
enhancements to the system timer functionality in existing kernels,
and for the clean-slate design of a system timer subsystem for new
OS kernels, including the extent to which applications might re-
quire such an interface at all.

Categories and Subject Descriptors: D.4.m [Operating Sys-
tems]: Miscellaneous

General Terms: Experimentation, Measurement

Keywords: timers, kernel interface design, adaptability, scheduling

1. INTRODUCTION
This paper examines an area of OS kernels which appears to have
received relatively little attention: the timer subsystem. The basic
design of such a timer facility has remained fairly static for decades
(compared, for example, to 6th Edition Unix [18]). Generally
speaking, an OS kernel includes a facility to schedule a notifica-
tion to a user-space task or kernel activity at some specified time in
the future, possibly suspending execution of the calling task in the
process. The interface to these systems (which we review briefly
in Section 2) offers relatively simple, low-level functionality, and
is used extensively by both the kernel and user-space applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

However, we argue that it is time to reconsider how hardware
timer functionality is presented by an operating system, both to
applications and kernel subsystems.

Firstly, the increasing prevalence of networked applications has
led to a considerable use of timer calls by applications, resulting in
significant observed CPU overhead [4]. For this reason, the Win-
dows Vista TCP/IP stack was recently completely re-architected to
use per-CPU timing wheels [30] for TCP-related timeouts. Vista
also dynamically adjusts the frequency of the periodic timer inter-
rupt, processing timers according to observed CPU load.

Secondly, determining appropriate timeout values in such ap-
plications is also difficult and is generally left to the application
programmer, leading to frequent arbitrary values (as we show in
Section 4.2) and associated slow response times in the presence of
failures. This problem can be compounded by layered software ar-
chitectures such as user-interface code, resulting in heavily-nested
timeouts.

Thirdly, timeouts with definite wakeup times can cause signif-
icant (and unnecessary) power consumption on systems that use
low-power modes during idle periods. Such concerns have led to
recent modifications in the timer interface provided by Linux [24].
Similarly, Vista delays periodic background jobs as a way to enable
hard disk spindown for power saving.

Our motivations in studying how kernel timers are used in Linux
and Vista are twofold. On the one hand, we want to assess what
short-term enhancements to a kernel’s timer functionality can have
the greatest impact on user-perceived performance and responsive-
ness. On the other, we are interested in what a clean-slate timer
system design for a new kernel might look like. This paper repre-
sents an early part of that design process.

The contributions of this paper are as follows:

• In Section 3 we present options for instrumenting OS kernels
(in particular, Linux and Vista) to extract timer usage data.
Since the timer primitives offered by these kernels are highly
generic and low-level, simple logs of timer invocation con-
vey very little information about how timers are being used.
We present techniques and heuristics for obtaining a more
complete picture of how timers are used by the kernel and
applications.

• In Section 4 we present measurement data and analysis from
studies of both Vista and Linux running under a variety of
workloads. We show that the same timer subsystems in both
kernels are used in at least five different ways. In addition,
very few regular uses of timers are adaptive (in that they
react to measured timeouts or cancelation times via a con-
trol loop), and many timers are set to “round number” values
such as 0.5, 1, 5, or 15 seconds.

• In Section 5 we discuss the wider implications of our results
for the design of a future timer subsystem from an OS ker-
nel. In particular, we observe that much existing timer usage
is closely related to OS task scheduling and dispatch. We
consider whether a carefully designed CPU dispatcher along
the lines of scheduler activations [2] might remove the need
for user-space timer functionality entirely.

In the next section, we first set the context by summarizing the
kernel timer facilities in Linux and Microsoft Vista.

2. TIMER SUBSYSTEM STRUCTURE
Timer subsystems in Linux and Vista provide very similar, and con-
ceptually very simple, basic operations: a timer can be set or armed
for some time in the future, an existing timer can be canceled be-
fore it expires, and an expiring timer is fired by calling the function
closure associated with it. In addition, in some situations a thread
or process can block on a timer, becoming unblocked when the
timer expires.

The implementation of such a subsystem requires some form of
priority queue for outstanding timers (typically implemented using
a variant of timing wheels [30]), together with an upcall or interrupt
handler from a lower-level timer. At the lowest level in the kernel,
this sits above a hardware interval timer or periodic ticker, such as
the (local) APIC in IA32 systems.

Such a timer subsystem is effectively a multiplexer for timers,
providing a (potentially unbounded) queue of timers to its clients
while requiring only a single timer (such as that provided by hard-
ware) underneath. This allows subsystems to be “stacked” or lay-
ered, with each layer multiplexing timeouts onto the layer below.
Timers in both Linux and Vista systems can be viewed this way, as
a dynamic tree (or, on a multiprocessor, a forest) of timer facilities
extending from hardware devices into application code.

In this paper we are primarily concerned with the broad seman-
tics, usage, and structure of timer subsystems rather than their par-
ticular syntax, though we point out details where they are impor-
tant.

2.1 Linux timers
Linux systems typically have two multiplexing layers, one in the
kernel and one implemented as a select loop in the application,
often in a library such as libasync [19] or Python’s Twisted-
Core [29]. While some kernel timer invocations are explicit (such
as the timeout parameter to select), others are implicit: for exam-
ple, a write call which ultimately invokes the hard disk driver will
cause a command timeout to be installed.

The Linux kernel implements two independent low-level facil-
ities: the standard timer interface, and the high-resolution timer
facility. The standard timer interface is driven at a fixed frequency
(the jiffy, by default 250Hz) by a hardware ticker device, such as
the (local) APIC. Expiry times are expressed as an absolute time
in jiffies since boot. Timers are represented as structures that are
preallocated by clients of the subsystem, and delivery of timeout
events is performed using simple callbacks outside of a process
context (as part of a bottom-half handler).

The functions involved in modifying timers on Linux are:

• init_timer, setup_timer: Initialize a timer data structure.
We refer to both as init_timer in this paper.

• add_timer, __mod_timer: Set a timer to a specified timeout
value and set it running. We refer to both as __mod_timer.

• del_timer, del_timer_sync, try_to_del_timer_sync:
Cancel a timer from the timer subsystem and set it inactive.
The latter two functions deal with corner cases on a multi-
processor, and we refer to both as del_timer.

• __run_timers: Execute callback functions of outstanding
expired timers. This function is called only from interrupt
context.

Linux also defines higher-level functions for timer operations,
some of which perform additional housekeeping tasks that are not
of relevance to this study. The functions mentioned above are the
most basic, and we will always refer to these.

Linux imposes few constraints on what functions can be called
on a timer struct, once init_timer has been called – for instance,
our traces show repeated deletions of an already-deleted timer. It
is also common in the Linux kernel to reuse a statically-allocated
timer struct for repeated timeouts.

Linux provides a facility for a thread executing in the kernel to
block waiting for a timer, but (unlike in Vista) this is implemented
by calling the timer system to install a callback, followed by a sep-
arate call to the scheduler to deschedule (block) the calling thread.

The large number of standard timers used in the Linux kernel
have recently been identified [24] as a significant factor in CPU
power consumption and utilisation: an otherwise idle CPU has to
wake up frequently in order to serve expiring timers. This has led
to a number of ad-hoc extensions to the basic timer interface:

• The round_jiffies and round_jiffies_relative func-
tions, introduced in kernel version 2.6.20, round a given ab-
solute or relative jiffy value to the next whole second. Timers
that do not need to be precise about their expiry time can use
these functions and will consequently time out in batches,
reducing the overall number of system wakeups.

• The dynticks feature introduced in version 2.6.21 disables the
periodic timer interrupt completely when the system is idle,
allowing the CPU to sleep until the next event.

• Version 2.6.22 adds a deferrable flag to the timer subsystem.
Timers that are marked deferrable function normally when
the CPU is running, but will not wake up the CPU if the
system is otherwise idle.

Unfortunately, these facilities are sufficiently recent that they are
hardly1 used in new kernels. We discuss their potential generaliza-
tion further in Section 5. Later versions up to 2.6.23.9 (the version
we instrumented for this study) did not change the standard kernel
timer subsystem in any significant way.

Linux kernels from 2.6.16 onward also provide a second high-
resolution timer facility [15] that is typically driven from CPU
counters, although external clock sources can also be used.

From user space, only two system calls allow setting a timer
without simultaneously blocking the calling process on some event:
timer_settime and alarm. The former is part of the POSIX timer
API and has a corresponding cancelation system call, the latter de-
livers an alarm signal after the specified timeout that can be can-
celed by another call to alarm with a timeout value of zero. All
other system calls serve different purposes that only involve setting
a timeout as a latest time of return from a long-running call.
1We found a total of 40 invocations of round_jiffies and round_-
jiffies_relative out of 1464 timer sets within Linux 2.6.23.9. The de-
ferrable flag is used 3 times within that kernel.

2.2 Vista timers
Vista’s timer facilities are considerably more complex. Timers are
multiplexed at many more layers in both the operating system and
applications. A significant difference with Linux (which makes it
harder to trace timer usage throughout the software stack) is that
most structures representing outstanding timers are allocated on-
the-fly and not reused. Another difference is Vista’s more gener-
alist approach to thread synchronization. Many timer structures
are subclasses of the basic synchronization object, meaning that
threads can block on timers.

All of Vista’s timer-related interfaces are ultimately imple-
mented over the NT kernel’s base KTIMER functionality. Kernel
timers can be set for absolute times or relative delays and canceled
using the KeSetTimer/KeCancelTimer interface and are added to
a timer ring which is processed on clock interrupt expiry. Timers
are a subclass of synchronization object and therefore threads can
block on timer objects directly. Alternatively, expiry events can be
delivered by deferred procedure call (DPC), analogous to Linux’s
bottom-half handlers. These timers are used extensively by device
drivers and kernel subsystems.

Threads can block on any NT synchronization object via the
WaitForSingleObject and WaitForMultipleObject calls, both
of which accept an absolute or relative timeout parameter. Wait
timeouts are implemented using a dedicated KTIMER object in the
kernel’s thread datastructure and have a fast-path insertion into the
kernel timer ring. Thread sleep is also based on this mechanism.

Timer functionality is exported from the kernel via the NT API
calls NtCreateTimer, NtSetTimer and NtCancelTimer which
provide essentially the same abstraction but using asynchronous
procedure calls (APCs) (analogous to Unix signals) rather than
DPCs, and identifying timers via HANDLEs in the kernel handle ta-
ble.

Recognizing that timers are used heavily in Windows, NT-
DLL (which sits directly above the kernel interface) provides
a user-level timer pool abstraction via the CreateThreadpool-
Timer/SetThreadpoolTimer APIs. This is essentially a user-level
timer ring multiplexed over a single kernel timer. Threadpool
timers invoke a user-supplied callback function on expiry.

Above this, the Win32 API exposes timer functionality in two
ways. Firstly, it provides the {Create, Set, Cancel}Waitable-
Timer APIs, which expose the NT API interface largely unmod-
ified. Secondly, it wraps these APIs in a form more suitable
for event-driven GUI applications providing SetTimer/KillTimer
calls. Timeouts from the kernel are delivered as APCs which insert
WM_TIMER messages in the application’s message queue. The queue
is serviced by the message dispatch loop of the application’s GUI
thread.

As with Unix, timeouts are also supported via the Winsock2
select API. Unlike most Unix variants, these are actually imple-
mented as a blocking ioctl on the afd.sys device driver, which
allocates a fresh KTIMER object and requests a DPC callback at the
appropriate expiry time to complete the ioctl.

2.2.1 User-space usage

Figure 1 demonstrates how often timers are used by applications
and the operating system on a typical desktop machine. The graph
shows the number of timers used per second by Outlook, Internet
Explorer, system processes and the kernel over a 90 second excerpt
from a trace. The kernel typically sets around a thousand timers
per second, whilst a typical application such as a web browser will
set tens of timeouts per second. Outlook uses around 70 timers

per second when idle, but during bursts of activity can set as many
as 7000 timers in a second. Upon investigation, this behavior was
traced to a coding idiom whereby any upcall in user interface code
is wrapped in a form of timeout assertion which catches upcalls
lasting longer than 5 seconds.

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

T
im

e
rs

/s

Time [s]

Outlook
Browser
System
Kernel

Figure 1. Timer usage frequency in Vista

2.2.2 The effect of layering

Large software systems are frequently composed of multiple layers
or components which, though internally complex, interact through
relatively simple and well specified interfaces. Successive lay-
ers usually provide increasing levels of abstraction, such as a file
browser GUI over the top of a file system API over one or more file
systems. Where components may be deployed in more than one
configuration it is extremely difficult to design interfaces which al-
low internal performance optimizations such as caching. It is even
more difficult to design interfaces which also handle failures and
timeouts.

For example, on Windows, when the user types the name of a
server into the file browser, parallel name lookups are initiated us-
ing WINS, DNS and other name providers. The application must
wait for one or more of these to succeed and sets timeouts on each
alternative. Typing an incorrect name can frequently result in a
long wait. Assuming name resolution is successful, the browser
will next attempt to connect to the server using a variety of net-
work file system protocols including SMB, NFS and WebDAV,
again these alternatives are tried in parallel with timeouts. In the
case of NFS (implemented over SunRPC) many implementations
respond to refused connections with an exponential backoff which
retries 7 times, doubling the initial 500ms timeout each iteration.
Thus, recovering from a typing error can take over a minute!

RPC subsystems are often designed to run over unreliable trans-
ports so individual operations have their own timeouts—often de-
faulting to a few seconds. Nowadays RPC is usually configured
over a TCP layer that again involves a complex series of timeouts,
both static timeouts for connection setup retries and adaptive time-
outs for packet retransmission due to loss.

In this seemingly simple example, it is not surprising that when
network connectivity to a file system is lost it can take tens of sec-
onds to present this failure to the user, and that the underlying cause
is lost in the process. Although a response from the file server usu-
ally arrives shortly after the 130ms round-trip time, the increasingly
conservative layered timeouts cause the operating system to take
much longer to notice the error than the end user.

3. METHODOLOGY
In this section we describe our methodology for logging timer ac-
tivity and the workloads under which we took traces.

As was discussed in Section 2, each system layer multiplexes
timer activity onto the layer below. Therefore, a trace of timer calls
at a low layer, such as in the kernel’s timer code, while giving good
coverage of timer usage throughout the system also makes it diffi-
cult to identify the true sources of timers. Furthermore, a low-level
instrumentation point masks the distinction between a single timer
whose value varies and multiple timers that are being coalesced and
thus appear to come from the same piece of code. To distinguish
such timers, as well as to identify the subsystems or applications
that use timers, we log stack trace data, process information and
timer structure addresses, in addition to timeout values.

Since Linux and Vista are quite different systems from an instru-
mentation point of view, we describe each separately, starting with
Linux.

3.1 Linux instrumentation
Linux already includes functionality to collect timer statistics as
part of the kernel debug code, providing a rough estimation of timer
usage in the Linux kernel. However, in order to observe the details
and duration of different timers, additional information needs to be
observed. Thus, we implemented separate functionality to log all
calls to the timer interface, including setting, cancelation, and ex-
piry of timers. In Linux the stack trace enables us to find out the
exact part of a kernel subsystem that registered a timer. For exam-
ple, since the TCP implementation is part of the IP subsystem and
uses its functions to register timeouts, recording only those func-
tions which register timers is insufficient to identify the originator
as the TCP stack. For user-level timers, although we use the pro-
cess ID and call stack to identify the timer, we cannot currently
identify the sources of timers beyond the system-call level.

A problem we encountered in the Linux tracing concerns conver-
sions between absolute and relative timeouts within the kernel. We
measure the event of arming a timer in the kernel’s __mod_timer
function, which accepts the absolute time value in the future at
which the timer will expire. This value is computed earlier by the
kernel code, usually as a relative calculation from the current time.
Since program execution takes time as well, and in some cases can
be pre-empted by another thread, the observed timeout values ex-
hibit jitter. Our classification of kernel-space timeouts accounts for
this jitter by allowing a variance of up to 2 milliseconds in the ob-
served timeout values. This value was experimentally determined
from observations of the kernel work-queue timer, a timer with a
known fixed period. No such jitter occurs in case of user-space
timeout values, as only relative values are accepted by the system
calls that arm timers and we measure these values directly at the
system call.

3.2 Linux environment
We chose to run our experiments on real hardware, and used low-
overhead binary logging to gather trace information. An alternative
approach that is feasible for certain workloads and which we ex-
plored in an earlier version of this paper uses a virtual machine en-
vironment, for example the QEMU emulator [8]. Virtualization has
a clear benefit: it permits running complete operating systems with-
out modification, while allowing the virtual machine to be stopped
and analyzed at any time using an attached debugger. This setup
provides a completely unintrusive experimentation environment.
However, for workloads involving entities not under control of the

virtual machine monitor, such as our network workload, virtualiza-
tion cannot be used without perturbation of measurement results.
Also, time is notoriously hard to virtualize. Thus, the accuracy of
measured timing information within an emulator may be doubtful.

Paravirtualization, as offered by Xen [6] or User-mode Linux
(UML) [13], is less attractive for this work, as it changes archi-
tectural details that would perturb measurement results. For ex-
ample, UML is implemented as a separate architecture inside the
Linux kernel with its own device drivers. As many kernel timers are
architecture-specific, we would obtain different results from UML
than a purely emulated system.

We ran our experiments on a PC with 8GiB of RAM and Intel
Xeon X5355 processors running at 2.66GHz, connected to the de-
partment’s LAN using a Gigabit Ethernet interface. The system
ran in 32-bit mode on a single processor. The LAN is routed to the
Internet.

For all experiments, we use a base Debian 4.0 operating sys-
tem, running the Linux kernel version 2.6.23.9, which has been
compiled to include debug symbols and frame pointers. All other
options are kept at their defaults (note that our kernel is therefore
configured without kernel preemption).

We developed a logging system that uses the relayfs [33] high-
performance binary logging infrastructure within Linux to log data
into a 512MiB buffer in kernel memory. We ensured that all of our
traces were able to fit into this buffer. After running the workload,
we used a user-space program to read out the buffer and convert
the trace into a textual format, which we then processed to gain the
results presented in this paper. relayfs ensures ordering of logged
events, and that new events cannot overwrite old logs.

We conducted several benchmarks to measure the impact and
overhead of our logging scheme:

• A micro-benchmark of the code executed to gather required
timeout parameters and log these to the memory buffer shows
an overhead of 236 CPU cycles. This result was calculated
by measuring the time for 1,000,000 consecutive runs of our
measurement code.

• We ran a timer-intensive workload, once with an unmodified
kernel and once with our logging enabled, and used the cy-
clesoak [20] program to determine the respective aggregate
CPU idle time available during each run. The difference is
within 0.1% of total CPU overhead.

• We counted the overall number of calls to the timer subsys-
tem for the same workload on both an unmodified kernel and
with our logging enabled. The difference is within 3% of the
number of calls.

3.3 Vista instrumentation
In order to capture all timer-related activity on Vista, it was nec-
essary to instrument both the KTIMER interface and the thread
wait codepaths. Similarly to relayfs, the event tracing for Win-
dows (ETW) facility [22] provides extremely low time and space-
overhead kernel-mode logging and proved to be ideal for our pur-
poses. We added events to the KeSet- and KeCancel- timer calls,
and also to the clock interrupt expiration DPC that processes the
timer ring and fires timeout DPCs.

As described in Section 2.2, thread wait primitives have a fast-
path timeout code, and so required explicit instrumentation. We
added a single event on thread unblock which logs the timestamps
before and after blocking, the user-supplied timeout parameter, and
a boolean indicating whether the wait was satisfied or timed out.

The problem of identifying repeated instances of the same high
level “timeout” is endemic in Vista. For example, several common
codepaths allocate kernel timer objects dynamically, and hence re-
peatedly calling select on the same socket will not typically re-
sult in operations on the same kernel timer. Similarly, the thread
wait primitives accept a user-supplied set of synchronization ob-
jects which may or may not be constant across invocations from the
same call-site. However, the Vista instrumentation is able to cap-
ture both the kernel- and user-mode stack for each log event, which
can be post-processed to cluster operations according to call-site
and thread ID and to help identify cross-layer timeout interactions.

3.4 Vista environment
We ran our experiments on a Dell Precision 380 Workstation with
an Intel Pentium D CPU running at 2.8GHz, with 2GiB of RAM,
connected to the LAN using a Gigabit Ethernet interface.

The test machine was running Vista Ultimate Edition 32-bit,
however it was booted with a privately-compiled kernel that con-
tains our additional instrumentation—although extensive ETW in-
strumentation already exists throughout Vista, this study required
the addition of four custom events to the kernel.

3.5 Workloads
Based on initial observations of timer usage, we identified four
workloads to drive our experiments:

1. an idle desktop system,

2. the Firefox web browser displaying a page from myspace.
com,

3. the Skype internet telephony program making a call,

4. a web-server under load.

The Idle, Firefox, Web-Server and Skype workloads run for ex-
actly 30 minutes. We justify this length by the observation of com-
mon timeout values: apart from the 7200 second TCP keepalive
timer shown in Figure 3, whose behavior is well understood, there
are no significant timeout values greater than 1000 seconds. This
allows us to observe the lifetime of all significant timers.

The Linux idle system consists of the Debian base installation
running the X window system and a window manager (icewm).
The system has already booted, and stock system daemons such as
syslogd, inetd, atd, cron, as well as the portmapper and gettys, are
running. The system is connected to the network, but no network
accesses from the outside are happening. We use this workload
to gain an overview of timer usage within a typical idle desktop
system.

The Vista idle workload consists of a standard Vista desktop in-
stall, with a user logged in on the console. No foreground applica-
tions were started, but 26 background processes (in addition to the
System and Idle tasks) were running.

For the Firefox workload, we ran Firefox version 2.0.0.6, dis-
playing a webpage2 that makes use of the Macromedia Flash plug-
in and JavaScript. No user input was provided while this workload
is measured.

For the Skype workload, we installed Skype version 1.4.0.99 and
directed it to make a phone call to another Skype account.
2The URL used was http://www.myspace.com/barrelfish.

We installed the stock Apache 2.2.3 web-server on the test sys-
tem and the httperf [21] benchmark on another machine connected
to the LAN to drive the webserver workload. For the Linux experi-
ment, the LAN ran at gigabit speed, but for the Vista experiment, a
100Mb switch was used between the server and the client. Httperf
is able to simulate artificial workloads and can replay pre-recorded
real workloads. We set it to generate an artificial workload of 30000
HTTP requests, emitting 10 parallel requests at a time. Each re-
quest is encapsulated in its own connection, and connections use a
timeout of 5 seconds on each state before they are considered bro-
ken and canceled. On Linux, the X window system was not running
during this workload.

4. RESULTS
In this section, we present a series of salient results from our data.

Table 1 shows a summary of our Linux data: timers shows the
total number of allocated timer data structures in each trace, con-
currency the maximum number of outstanding timers at any time,
accesses is the total number of accesses to the timer subsystem,
and user-space kernel show the number of explicit and implicit ac-
cesses from user-space and the kernel. Set, expired, and canceled
show the total number of operations of each type during the trace.
Table 2 shows a similar summary for Vista.

Idle Skype Firefox Webserver
Timers 47 74 95 103
Concurrency 25 32 36 31
Accesses 165345 535686 3948490 283634
User-space 148603 517291 3927194 77272
Kernel 16742 18395 21296 206362
Set 63183 198021 1401976 112998
Expired 36477 65883 262703 19518
Canceled 26835 132553 1140744 96006

Table 1. Linux trace summary

Idle Skype Firefox Webserver
Timers 144 219 228 135
Concurrency 75 80 84 73
Accesses 270691 2169896 5202502 275786
User-space 55771 1424791 4924561 72476
Kernel 214920 745105 277941 203310
Set 252178 2101677 5186065 259871
Expired 233489 2016165 5054879 242775
Canceled 18659 68438 16665 16050

Table 2. Vista trace summary

We can see that timer usage is extensive in both the kernel and
applications, and that GUI applications can be responsible for a
very large number of timer calls. We can also see that on Vista
timers more often expire, whereas on Linux more timers are can-
celed.

4.1 How are timers used?
A natural question to ask is what the timer facility is being used
for. In principle this question can be answered simply by code in-
spection, though the multi-layered complexity of the timer system
on Vista makes this all but intractable. Even on Linux this task
presents a considerable challenge when considering the entire soft-
ware stack from the low-level drivers up to the X window system
and a complex application such as Firefox.

In any case, such an analysis is unlikely to yield information
on which timers are used frequently. Since our motivation for this
work is both to improve existing timer systems and design a new
one, we are interested in the use-cases which are most common
at runtime, not necessarily those that occur most frequently in the
code. It is the former where improvements to a timer system should
be expected to show the greatest impact.

Hence we adopt a hybrid approach: we profile running systems,
identify patterns in timer usage, and then inspect code paths. This
leads us to a useful taxonomy of how the timer subsystem is used
in practice.

A natural criticism at this point is that surely such a taxonomy
is obvious to the developers of the operating systems. We claim
that reality is not so clear-cut: OS developers use timer facilities to
solve particular problems at hand, and may not have the luxury or
inclination to reflect on wider classes of usage—they focus (with
good reason) on point solutions.

Moreover, given the propensity of systems hackers towards ab-
straction, one would expect to see such a taxonomy enshrined in
programming constructs or functions, or at least discussed at length
in kernel documentation or design papers. We find no such docu-
mentation, and the timer primitives are generally invoked directly
regardless of usage mode (a notable exception is Win32, which has
programming constructs for timeouts). Consequently, we consider
it a valuable exercise to classify actual programming practice into
usage patterns, and correlate these patterns with trace data showing
invocation frequencies.

4.1.1 Usage patterns

Since many timers are always set to constant values, we consider
such timers first. As before, we start with Linux, since the reduced
layering and the widespread static allocation of timer structures
makes it easier to correlate successive uses of a timer.

We observe that a timer used repeatedly shows one of several
patterns of behavior:

• The timer always expires, and is immediately re-set to the
same (relative) value. This corresponds to a periodic ticker,
such as the Linux page out timer. A variant of this is the be-
havior seen with the X server in section 4.2, where a select
timer repeatedly counts down until being reset to its former
value.

• The timer never expires: before its expiry time, it is re-set to
the same relative value in the future. This is a watchdog: it is
endlessly deferred unless some (presumably) serious system
condition prevents deferral. An example is the Linux console
blank timeout.

• The timer usually or always expires, and after some (non-
trivial) time interval, is set again to the same time value.
Threads delaying execution for a fixed interval show this pat-
tern.

• The timer almost never expires but instead is canceled shortly
after being set, and after some (non-trivial) time interval, is
set again to the same time value. This is a timeout, e.g. RPC
calls or IDE commands.

Since re-setting a timer takes time as well, we allow a variance
of 2 milliseconds between a timer expiry and its subsequent reset
when classifying these timers. This value has been experimentally
determined as mentioned in Section 3.1.

 0

 10

 20

 30

 40

 50

 60

 70

 80

delay

periodic

tim
eout

w
atchdog

other

%
 o

f
ti
m

e
rs

Idle
Skype
Firefox

Webserver

Figure 2. Common Linux timer usage patterns

Figure 2 shows the frequency of these use-cases in our Linux
traces. We can see several expected features: for example, Apache
uses watchdogs to timeout connections, whereas the Idle workload
employs almost none, but is instead dominated by periodic back-
ground tasks.

The high number of unclassified timers in the Skype and Firefox
workloads correspond to a large volume of very short timers: 4, 8
or 10ms, or 1, 2 or 3 jiffies. Both are soft real-time tasks (Skype is
processing audio, and Firefox is playing Flash animations), and we
conjecture that the minimal timer settings are an attempt to create
a soft real time execution environment over a best-effort system,
a question we return to in Section 5.5. The high number of un-
classified timers in the Idle workload is due to an idiomatic use of
select by X and the window manager which we examine below
in Section 4.2.

Vista traces are also marked by a significant proportion of peri-
odic and watchdog timers, and show a further distinctive pattern:

• The timer is repeatedly deferred by a constant amount each
time as with a watchdog, but after a few iterations expires,
before being restarted again. This mode is used for a deferred
operation, for example lazy closing of handles to Vista reg-
istry contents. The idea is that the expiry triggers an action
which should be taken when the activity in question has been
idle for some period.

A final “pattern” is hard to recognize except by elimination, but
is frequently seen in select-like uses where clients have multi-
ple outstanding timers and are in addition waiting for thread syn-
chronization on multiple objects. In this case, there can be very
little regularity in either timeout values, or whether they are sub-
sequently canceled or expire. However, in these cases the timer is
usually reinstalled soon after expiration or cancelation—indicating
an iteration of the client’s event loop.

4.2 Commonly-used values
The most immediately apparent finding from our data on both Vista
and Linux concerns the distribution of the timeout values when
timers are set. Figure 3 shows the frequency of each timeout value
responsible for more than 2% of the timers in each trace in Linux.
Collectively, these timeout values represent 32% of all timers set
during the traces.

For the Webserver workload, of which 97% of the timeouts are
shown, it is evident that many timeout values in Linux have been

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.004 (1)

0.012 (3)

0.028 (7)

0.036 (9)

0.04 (10)

0.06 (15)

0.068 (17)

0.204 (51)

0.248 (62)

0.5 (125)

1 2 3 15 7200

%
 o

f
v
a
lu

e
s

Timeout value [s] (jiffies)

Idle
Webserver

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.004 (1)

0.008 (2)

0.012 (3)

0.024 (6)

0.044 (11)

0.048 (12)

0.052 (13)

0.096 (24)

0.1 (25)

0.248 (62)

%
 o

f
v
a
lu

e
s

Timeout value [s] (jiffies)

Skype
Firefox

Figure 3. Common Linux timer values (≥ 2%)

determined offline and by human beings, rather than online and/or
by machine calculation. Only some timeouts, like 0.204, which is
the TCP keepalive timeout, are determined by online adaptation.

At first, the story seems different for the Idle (56%), Firefox
(21%) and Skype (62%) workloads, until we examine the traces
more closely. Figure 4 shows a small portion of the Firefox trace.
Both the X server and the icewm window manager start by setting a
constant timeout for select. When select returns due to file de-
scriptor activity, Linux updates the timeout value to reflect the time
remaining, and the processes use this new value until it reaches
zero.

If we take this behavior into account (see Figure 5), it is clear
that also for the Idle workload, almost all timeout values in applica-
tions and the kernel are determined by the programmer at compile
time. Since this behavior, which is dominated by the X server and
the window manager, distorts our measurement results with a well
understood pattern, we filtered timers allocated by these programs
from the results presented in all following figures. Firefox em-
ploys the same mechanism, seen in Figure 5 as a countdown from
3 jiffies. The only slightly more adaptive application is Skype, set-
ting a number of short, irregular timeouts using poll and select
throughout its workload, but is dominated by constant timeouts of
0, 0.4999 and 0.5, as shown in Figure 6.

In Linux we see a high correlation between timeout values and
the static addresses of timer structures. This allows us to create
Table 3, which shows a detailed list of the origins of these frequent

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
o

u
t

v
a

lu
e

 [
s
]

Time [s]

Xorg

Figure 4. Dot plot of X timer usage via select

Timeout [s] Origin Class
0.004 Block I/O scheduler Timeout

Firefox polling file descriptors Timeout
0.008 Firefox polling file descriptors Timeout
0.012 Firefox polling file descriptors Timeout
0.04 Sockets Timeout
0.052 Skype Other
0.1 Skype Other
0.204 TCP retransmission timeout Timeout
0.248 USB host controller status poll Periodic
0.5 High-Res timers clocksource watchdog Periodic
1 Kernel workqueue timer Periodic

Apache event loop Timeout
2 Kernel workqueue Periodic

ARP Periodic
e1000 Watchdog Timer Periodic

3 Sockets Timeout
4 ARP Periodic
5 Dirty memory page write-back Periodic

init polling children Periodic
Packet scheduler Periodic
ARP Timeout

8 ARP cache flush Periodic
15 apache2 socket poll Timeout
30 IDE Command timeout Timeout

7200 TCP keepalive Timeout

Table 3. Origins and classification of frequent Linux timeout values

timeouts within the kernel. Most are self-explanatory. In the table,
we also list constant timeout values that do not occur frequently
(< 2%) in our traces, but are nevertheless interesting. We also left
out values belonging to adaptive timeouts.

Human time-scales also dominate when we consider only time-
outs set from user-space, as shown in Figure 6.

Figure 7 shows the results for our Vista workloads, which are
similar. It is much harder to correlate such values with usage, but
it is clear that a similar thing is happening in the Idle workload (in
which 91% of timeout values are shown) and Webserver workload
(86%), and to a lesser extent in the Skype (46%) and Firefox (13%)
workloads.

The message of these results is that most timers are always set to
a fixed, programmer-decided value or (as with select) repeatedly
count down from such a value, and are not derived from measuring
the system at hand. We return to this issue later.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.04 (10)

0.204 (51)

0.248 (62)

0.5 (125)

1 2 3 4 5 15 7200

%
 o

f
v
a
lu

e
s

Timeout value [s] (jiffies)

Idle
Webserver

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.004 (1)

0.008 (2)

0.012 (3)

0.02 (5)

0.024 (6)

0.04 (10)

0.044 (11)

0.048 (12)

0.052 (13)

0.092 (23)

0.096 (24)

0.1 (25)

0.248 (62)

0.5 (125)

%
 o

f
v
a
lu

e
s

Timeout value [s] (jiffies)

Skype
Firefox

Figure 5. Common Linux timeout values (≥ 2%), filtered from X and icewm

4.3 Observed timer durations
We have shown that most timers are set to fixed values, but we
have not yet considered when they expire or are canceled. In this
section, we examine for how long timers actually run. Figures 8–11
plot for each workload the value each timer was set to versus the
percentage of this time after which it was canceled or expired. The
size of a circle represents the aggregate value frequency. Timers
set to expire immediately or with an expiry time in the past are not
plotted. As in the previous section, we filtered the X and icewm
select-loop timers from the Linux results.

Many points on these graphs lie above 100%; this is an indicator
that the timer expiry was delivered sometime after the scheduled
time—particularly the case with short timeouts that are close to the
system’s scheduling granularity. The plotted points for timeouts
shorter than around 10ms tend to exhibit a hyperbolic curve, due to
the logarithmic time axis and the roughly-constant time required to
set and then deliver a timer expiry notification. The figures are cut
off above 250% (timers that expire more than one and a half times
later than their set expiry time)—this happened mainly with very
short timeouts in the Vista traces.

The many timeouts set to very short values have dubious value
as useful timekeeping functions—most are delivered a significant
fraction of their duration after their expiry time. This is understand-
able given the structure of the operating systems, but it is interest-
ing that application developers still employ them. In particular, the
Vista Firefox trace shows timers of this kind, having a timeout of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 0.004

0.008

0.012

0.4999

0.5
1 2 5 10 15 30 60

%
 o

f
v
a
lu

e
s

Timeout value [s]

Idle
Skype
Firefox

Webserver

Figure 6. Common Linux syscall timer values (≥ 2%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 0.001

0.003

0.01
0.02

0.05
0.1156

0.2
0.25

0.5
0.5156

1 2 3

%
 o

f
v
a
lu

e
s

Timeout value [s]

Idle
Skype
Firefox

Webserver

Figure 7. Common Vista timeout values (≥ 2%)

less than one millisecond and being delivered at essentially random
times.

Linux rounds timeouts to the nearest jiffy. Therefore, we do not
see any timers of less than one jiffy (4ms) in the Linux traces, and
there is a quantization effect for small timeout values which is not
seen in the Vista traces.

Looking at specific workloads, we first see that in the Idle work-
load on Linux, most timers expire at the set time, and a few are im-
mediately canceled. However, on Vista there are many more time-
outs, both small and large, being set and delivered at variable de-
lays. Common sources of timers on the idle Vista system included
the Idle and System tasks themselves, the user processes csrss.exe
and svchost.exe, and a third-party system tray application for the
audio device, all of which set more than two timers per second.

The large cluster of points below 1 second seen in the Skype
workload is characteristic of adaptive timers and is indeed an irreg-
ular pattern emitted by the Skype program through the select and
poll system calls, as well as by adaptive socket timers. The ar-
ray of points up to 50% at 3 seconds originates from socket timers.
Linux’s rounding of timeout values to the nearest jiffy is clearly vis-
ible here. The five second timer, which also appears in the Linux
traces of the Firefox and Webserver workloads, originates from the
ARP code within the Linux kernel. This code sets a constant five
second timeout that is canceled at random intervals after it has been
set. We account this to activity on the LAN that is part of our test
environment. On Vista, the Firefox workload uses an even larger
number of timers (2881 timers are set per second), many well be-
low 10ms.

(a) Linux (b) Vista

 0%

 50%

 100%

 150%

 200%

 250%

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

E
x
p
ir
e
d
/C

a
n
c
e
lle

d
 i
n
 %

 o
f
s
e
t
ti
m

e
o
u
t

Timeout value [s]

 0%

 50%

 100%

 150%

 200%

 250%

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

E
x
p
ir
e
d
/C

a
n
c
e
lle

d
 i
n
 %

 o
f
s
e
t
ti
m

e
o
u
t

Timeout value [s]

Figure 8. Aggregated timeout expiry/cancelation times correlated with timeout duration (Idle workload)

(a) Linux (b) Vista

 0%

 50%

 100%

 150%

 200%

 250%

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

E
x
p
ir
e
d
/C

a
n
c
e
lle

d
 i
n
 %

 o
f
s
e
t
ti
m

e
o
u
t

Timeout value [s]

 0%

 50%

 100%

 150%

 200%

 250%

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

E
x
p
ir
e
d
/C

a
n
c
e
lle

d
 i
n
 %

 o
f
s
e
t
ti
m

e
o
u
t

Timeout value [s]

Figure 9. Aggregated timeout expiry/cancelation times correlated with timeout duration (Skype workload)

(a) Linux (b) Vista

 0%

 50%

 100%

 150%

 200%

 250%

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

E
x
p
ir
e
d
/C

a
n
c
e
lle

d
 i
n
 %

 o
f
s
e
t
ti
m

e
o
u
t

Timeout value [s]

 0%

 50%

 100%

 150%

 200%

 250%

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

E
x
p
ir
e
d
/C

a
n
c
e
lle

d
 i
n
 %

 o
f
s
e
t
ti
m

e
o
u
t

Timeout value [s]

Figure 10. Aggregated timeout expiry/cancelation times correlated with timeout duration (Firefox workload)

(a) Linux (b) Vista

 0%

 50%

 100%

 150%

 200%

 250%

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

E
x
p
ir
e
d
/C

a
n
c
e
lle

d
 i
n
 %

 o
f
s
e
t
ti
m

e
o
u
t

Timeout value [s]

 0%

 50%

 100%

 150%

 200%

 250%

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

E
x
p
ir
e
d
/C

a
n
c
e
lle

d
 i
n
 %

 o
f
s
e
t
ti
m

e
o
u
t

Timeout value [s]

Figure 11. Aggregated timeout expiry/cancelation times correlated with timeout duration (Webserver workload)

The cluster of points between 80% and 100% around 5 seconds
in the Linux Webserver workload is due to timers in the filesystem
journaling code that already have adaptive timeout values and are
mostly canceled. The Webserver workload on Vista appears similar
to the Idle workload on the same OS, and interestingly does not
include the 7200 second TCP keepalive timer that is used by Linux.

If frequent timeouts amenable to online adaptation existed, we
would expect to see them as a vertical array of circles with some
at or above 100% (representing expired timers), but a significant
number well below 100%, and a large gap in the higher percentages
in between. In the case of responsiveness, we are only interested
in timeout values above 0.5 seconds, since below this the effect of
adaptation may not be noticeable—though in a tight control loop
like TCP this may still be important. Such an array can be seen in
the Linux figures at 5 seconds, however as we have explained, its
variance is due to network activity on our LAN.

The Skype and Firefox traces show clear cases of timeouts which
are mostly (but not all) canceled well before they expire, however,
these are all timeouts of very short duration. Adapting timeouts at
this short timescale is not very helpful to responsiveness, although
it reduces the number of system calls and thus kernel crossings as
the cancelation of timers is equally distributed between 0% and
100%, showing that the calls actually block Firefox for a short
amount of time. Given the sheer number of timer subsystem ac-
cesses in the Firefox workload, timeout adaptation would signifi-
cantly decrease this overhead.

5. IMPLICATIONS AND DIRECTIONS
We embarked upon this study for two reasons: firstly, we had an in-
tuition that existing timer subsystems were suboptimal in operating
systems in use today and wanted to verify our hunch, and secondly,
we wanted some empirical results as a basis for both enhancing
existing OS timing facilities and designing a new one.

From a historical perspective, applications, workloads, and ma-
chine capabilities have certainly changed since the design of the
Unix timer system, while the basic set/cancel timer interface has
remained essentially unchanged [18]. While its survival is a testa-
ment to minimalist elegance, recent changes and our findings here
both indicate that a rethink may be in order.

In this section, we conjecture about a set of features that would
result in a more flexible timer system that would lend itself better

to dynamic optimization of CPU usage, power consumption, re-
sponsiveness, or some tradeoff thereof. We start with modifications
and additional functionality that our results suggest would benefit
Linux and Vista, and then present more general design principles
for a combined CPU scheduling and timer system which would fi-
nesse most of the issues we have encountered in our measurements.

5.1 Adaptive timeouts
As we have seen, timers are usually set to fixed, hardcoded values,
but they could instead be adaptive. A computer system learns a
great deal of information from its environment that can, and we
believe should, inform selection of suitable timeout parameters at
runtime.

A prominent example of the use of adaptive timeouts (as well as
fixed ones) is of course TCP [16, 27], which constantly maintains
a reasonable value for its retransmission timeout that is based on
network conditions. It monitors the mean and variance of round-
trip times and uses these to adjust the timeout value. When packets
are lost or delayed, TCP avoids exacerbating the problem by apply-
ing an exponential backoff algorithm to increase the retransmission
timeout value on each iteration. TCP’s retransmission timer is an
instance of using a timeout to detect failure and to improve respon-
siveness. The protocol also incorporates a persistence timer that is
used to detect deadlocks that would otherwise occur when an ac-
knowledgment packet is lost and both ends of the connection are
left waiting for the other. This timeout determines the frequency
with which the sender probes the receiver, and like the retransmis-
sion timeout, is adjusted using exponential backoff up to a maxi-
mum.

One might generalize this. For example, when a programmer be-
gins to wait for a network message to arrive, rather than specifying
a willingness to wait for an (arbitrary) 30 seconds, the program-
mer should request to “time out” once the system is 99% confident
that a message will never be arriving. Note that this does not mean
that failures will be detected 1% of the time. The confidence in-
terval can be calculated by learning the distribution of wait-times
for each timer object. The question is whether it is feasible to fit a
simple model to the distribution of wait-times in a running system.

Having a model correctly increase and shorten wait times clearly
entails modifying the timer system in the OS to continue moni-
toring for the event that was being waited for. There is a further
challenge, however: wait times might increase due to a change in

environment. For example, a user who normally accesses a network
file system via a local-area network will see very different latencies
if they try to access the same network file system from a wide-
area network connection while traveling. Other causes of wait time
changes might be workload changes causing performance varia-
tion. Frequent changes in latency will be reflected in our learned
confidence intervals, but sudden and long-lived level shifts in la-
tency will cause the whole learned distribution to shift.

5.2 Timeout provenance and dependency
Tracking timers effectively, particularly across the abstraction bar-
riers imposed by select loops and other timer multiplexers, is
challenging in current systems. There are clear benefits to be
gained from preserving and propagating information about how
timers have been set, and by whom, throughout the system. While
it would have made our lives easier in correlating timer setting and
expiry with kernel- and user-space activities, this has wider appli-
cability.

In particular, with the widespread use of timers in application
programming (particularly over Vista, but also increasingly with
event-driven user-interface toolkits over Linux), debugging com-
plex systems that internally employ watchdogs, timeouts, and pe-
riodic tasks will be a serious challenge. There are clear parallels
here with the labeling of requests in multi-tier applications: being
able to trace execution through the system is a critical requirement
for understanding anomalous behavior [5, 10, 11]. We return to the
more strategic implications of this in Section 5.5 below.

Ideally, explicitly capturing timer provenance information
should go beyond single timers, or a collection of independent
timers multiplexed onto a lower-level facility. Timers do not always
stand on their own. Common idioms we have seen in GUI pro-
gramming suggest that timeouts are frequently nested—operations
that time out at one layer are retried until a higher-level, enclosing
timeout fires. Other such dependencies are possible; in theory, the
following relationships between two timers t1 and t2 can be identi-
fied:

1. t1 overlaps t2: This is the case when t1 is set prior to or at
the same time as t2 and its expiry time is later than that of t2.
Overlapping timers waiting on the same event can be further
classified:

(a) Either just t1, or both t1 and t2 expiring signify a failure
of some kind. In this case max(t1, t2) is the expiry time
and we may not need t2. An example of this situation
occurs in Section 4.4.5 of the DHCP specification [14].

(b) Only t2 need expire to signal a failure, in which case
min(t1, t2) is the expiry time and we may eliminate t1.

(c) Neither t1 nor t2 need expire. In this case the only thing
we can do is to cancel the other timeout, as soon as one
of them is canceled. An example is the TCP keep-alive
and retransmission timers, described in Subsection 4.3.

2. t2 depends upon t1: In this case, t1 is set first and t2 is only
set upon cancelation/expiry (depending on the relation) of t1.
Periodic timers are self-dependent by this definition.

Inferring, or allowing programmers to explicitly declare, such
relationships between timers would not only lead to better trace-
ability and debugging, it would allow the timer implementation to
optimize and adapt their behavior.

In practice, overlapping and dependency relationships are inter-
changeable: an overlapping relationship can always be transformed
into a dependency relationship and vice-versa. For example, as-
suming that t1 overlaps t2, we can first set t2 only and upon its
expiry, we set t1 only for the remaining time. If t2 is canceled, we
might not need to register t1 at all, depending on the overlapping
relationship - one technique to reduce the number of concurrent
timers.

The use of layering and information hiding principles in object-
oriented design provides problems for timer-based systems. One
example we have shown is where naïve layering of timers leads to
suboptimal behavior in the presence of failure (Section 2.2.2). A
second example (see Figure 10) is where a large number of timer
events result from attempting to layer soft-real-time tasks (Flash
plugins) over a best-effort substrate (Firefox, and the Linux or Vista
kernels).

The temporal behavior of a program which requires timeouts,
watchdogs, periodic tasks, and the like can be viewed as a cross-
cutting concern which affects areas of the system that do not cor-
respond well to software module boundaries. The field of Aspect-
Oriented Programming (AOP) has developed concepts and tech-
niques for dealing with other such cross-cutting concerns, and it is
an interesting open question as to whether such ideas can be ap-
plied to orthogonally specify the timer-related behavior of a soft-
ware system. While a number of aspects of OS kernel design have
been addressed by the AOP community including scheduling [1],
we know of no work that has viewed the problem of layered timers
from such a perspective.

5.3 A better notion of time
Analysis of call stacks in our traces shows that a significant number
of periodic timers (and especially those with large human-specified
periods) are intended to run background housekeeping activities
such as page cleaning, or flushing the file-system journal. In these
cases, the programmer probably meant:

“Please wake up this thread at some convenient time
in the next 10 minutes”

... rather than:

“In 600.0 seconds time +/- 10ms, please execute the
following function.”

If the precision of a timeout is separately specified, the OS has
the ability to batch timeout delivery, perhaps allowing the proces-
sor or disk to be placed in a power-saving mode. In reality, the
programmer often has a mental utility function u(t) for the value
of running his code at some future time t. Various soft-real-time
operating systems have explored task scheduling with similar ab-
stractions [17, 32].

The recent changes to the Linux kernel interface described in
Section 2.1 can be viewed as limited particular cases of this, de-
signed to save power and/or CPU for timers whose expiry time
does not need to be precise. However, this suggests that a timer
subsystem would more generally benefit from a richer way of ex-
pressing an intended expiry time. Long-standing experience with
declarative specification of results from relational databases shows
that specifying the minimum necessary information allows a system
maximum flexibility in generating suitable results—in this case,
scheduling a timer.

Facilities including the Unix cron daemon already offer richer
(and looser) specifications of periodic tasks, but we envision a timer
subsystem offering still more expressive time values, such as:

“Any time after 10 minutes,” for a delay timer.

“Every 5 minutes, on average over an hour,” for a low-
frequency periodic timer.

“After we have exceeded 100 standard deviations
above the mean round-trip time to this host,” for a
network-related timeout.

One concern with such flexible specifications is that the compu-
tational overhead of calculating a (nearly) optimal timer schedule
should not outweigh any benefit gained from having a better sched-
ule in the first place. However, a scheduling algorithm with such
information can always fall back to simpler non-optimal sched-
ules if system conditions require it, whereas the reverse is not true.
Thus, we see this more as a continuous tradeoff between flexibil-
ity/optimality on the one hand, and overhead on the other. Different
degrees of expressivity are clearly appropriate at different levels in
the system, and we plan to investigate this tradeoff in more detail
in our ongoing work.

5.4 Use-case-specific interfaces
Since most timer uses we observe can be fitted into a small num-
ber of well-defined use cases, we conjecture that we might improve
the overall reliability of the system by replacing the general time-
out mechanism with several abstractions, tailored to different us-
age scenarios. We explore the implementation advantages of this
below; here we explore the design of such specialized interfaces.

The most obvious case for specialization is periodic tickers. The
basic interface is:

“Every time period of length t, invoke function f .”

Periodic tickers requiring precision in timing would benefit from
not having to reset themselves and correct for the time taken to do
this in their calculation. Perhaps more importantly, periodic tasks
requiring much less precise ticks could maintain average frequency
while tolerating local variations in the interests of performance.

Timeouts provide a more interesting use-case, and indeed Win32
GUI developers already extensively use a programming idiom akin
to that sometimes used for mutexes in C++: an auto object is de-
clared in a procedure, its constructor installs a timeout, and its de-
structor cancels the timer. The net effect is to declare:

“If this procedure has not returned in time t, invoke
function e.”

Specifying timeouts in this manner allows the timer implemen-
tation to identify the dependencies when nested timeouts are spec-
ified by code on the same thread. If the duration of an inner-level
timeout exceeds an already-waiting timeout, the inner timeout may
be ignored.

Watchdog timers are similar but subtly different to timeouts, al-
though they offer similar scope for optimization. Their interface
would be:

“If this code path has not been executed within time t,
invoke function f .”

Finally, delay timers correspond most directly to the current
timer subsystem API. They simply declare:

“After time t, invoke function e.”

These cases are derived from our observations about how a sin-
gle set/cancel interface is used differently in practice by a variety
of applications. However, the cases we have presented above point
to a wider issue which has generally not been recognized by the de-
signers of general-purpose OS kernels. The timer interface, when
used in these ways, is telling the kernel which piece of code to run
when. The kernel also has another subsystem dedicated to imple-
menting this type of policy: the CPU scheduler.

5.5 Timers and scheduling
This has been a paper about timer subsystem design and usage and
not CPU scheduling. However, it’s clear that timers and scheduling
are closely related—the CPU scheduler is in principle the system
entity that decides what code to run when, whereas setting a timer
implicitly requests that a piece of code run at a particular time in
the future. Given this relationship, it is remarkable that both Linux
and Vista have evolved with almost completely separate timer and
scheduler subsystems, which interact almost solely through the op-
eration of unblocking a thread.

At present, the timer system and the scheduler export separate
interfaces, and indeed the timer system is practically the only way
that an application can influence at a fine granularity how it is
scheduled.

Our results in Section 4.3 suggest we can view the timer use of a
soft-real-time application such as Skype or Firefox (with the Flash
plugin) as an attempt to achieve a fine-grained scheduling behavior
not provided by the CPU scheduler. More generally, the four iden-
tifiable use-cases in Section 4.1 suggest that an application-level
interface to the CPU scheduler, rather than an explicit multiplexer
of hardware timers, is what applications would find most useful.

Such a scheduler would differ from current designs in two re-
spects: firstly, it would need to support an interface for applica-
tions to specify more complex requirements, such as those in Sec-
tions 5.3 and 5.4 above. We note that such application requirements
need not violate any system-wide policies for allocating the CPU
between tasks, but can provide for dispatching the application at
the right time.

Secondly, in order to supplant the timer interface for applica-
tions, such a scheduler would need to dispatch the application in
such a way as to run the right piece of code at the right time (as
the timer interface purports to do), rather than simply resuming the
process. This can be achieved either in the kernel or in user space
libraries by the functionality of techniques such as Scheduler Acti-
vations [2] or the Psyche scheduler [23].

There are, of course, significant challenges to realizing such
a design. In particular, the CPU scheduler must now deal with
complex constraints (which can be thought of as short-term exe-
cution “plans”, by analogy with database systems) from multiple
applications as well as a system-wide CPU allocation policy, and
these constraints change dynamically. Nevertheless, we feel this
is a promising direction for future research and we are actively re-
searching such a design.

Finally, we note that such insights are not entirely new in other,
closely related fields. The soft real-time scheduling of multimedia
operating systems such as Rialto [7] provides some of the func-
tionality we are advocating here, though we propose a richer ex-
pression of application scheduling and callback requirements. Fur-
thermore, the notion of eschewing timer events in favor of more
sophisticated scheduling algorithms is commonplace in the real-
time systems community. Hard real-time systems sometimes avoid
timers completely except as a way of deterministically invoking the
scheduler [12].

6. RELATED WORK
We are not aware of any previous work that takes an end-to-end
view of timer use, or explores new interfaces for specifying time-
outs. Surprisingly few researchers appear to have questioned the
basic set/cancel interface for timers, focussing instead on point-
solutions to problems such as timer resolution, timer overhead, and
power consumption.

Higher-resolution timing subsystems have been investigated over
a long time: UTIME [26] proposes a way to add sub-jiffy preci-
sion on the base of dynamic ticks to Linux in the context of firm
real-time applications. In the same context, the Rialto operating
system [7] proposes a very similar high-resolution timer subsys-
tem. The HRT project [3], which eventually became the current
implementation of high-resolution timers in Linux 2.6.16 [15], is
a fork of the UTIME codebase. Stultz et al. [28] also proposed
a new Linux timer subsystem with a view towards simplicity, cor-
rectness, clock source abstraction and high-resolution clocks, again
on the basis of dynamic ticks. All five projects recognize the high
overhead of timer management with high-resolution clock ticks.

There are several works on periodic polling of network interfaces
for high-performance networks that inevitably deal with shortcom-
ings of existing timer subsystems:

• Soft timers [4] is a facility to emulate a timer subsystem of
microsecond precision without the processing overhead of
hardware timer interrupts, by polling for timer expiry at con-
venient points in the execution of an operating system.

• Periodic timer interrupts are used in the Aurora ATM driver
[25] to initiate polling for packet completions on Gigabit net-
work interfaces, trading off between interrupt overhead and
communication delay.

Brakmo and Peterson [9] report on shortcomings in TCP retrans-
mit timeout estimates in the BSD4.4 implementation, to which they
do not provide a final solution, but show that special cases can be
improved.

The relationship between timer maintenance algorithms, time
flow mechanisms used in discrete event simulations, and sort-
ing techniques is explored by Timing Wheels [30]. This work
presents an algorithm for time intervals of fixed size that takes O(1)
time to maintain timers within that interval. Two extensions for
dynamically-sized intervals of different granularity, based on hash-
ing and hierarchical data structures, are presented as well.

7. CONCLUSION
We have presented a study of how timers are used by a series of
workloads over both Linux and Vista, and outlined the challenges
in collecting appropriate data, including correlating use of timers
with applications, and tracing timer provenance through layers of
multiplexing.

Our results show that timer usage is widespread in mainstream
operating systems, and in particular is intensively used by graphical
user applications and windowing systems. Moreover, the time val-
ues provided as arguments to the timer subsystems are in general
fixed, round figures determined by humans, in sharp contrast to the
timeouts set by protocols like TCP, which are carefully tuned based
on online measurements. We have shown cases where the layering
of timers loses information about the desired temporal behavior of
the system as a whole.

We identified a number of clear and distinct usage patterns of
timer subsystems. Based on these, we have proposed a higher-level

interface to a timer subsystem that specifies more about the tempo-
ral behavior an application wants: what code needs to run when.
We also argue for a more flexible expression of “time” that better
reflects application requirements.

This finally has led us to reconsider the traditional separation
between the timer subsystem and the CPU scheduler. Our ongo-
ing research is investigating to what extent an application interface
to the CPU scheduler (incorporating the use cases we have identi-
fied) obviates the need for a separate timer interface, and also the
challenges in implementing such a CPU scheduler in a modern op-
erating system.

8. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their many
insightful comments on how to improve this paper. We also ac-
knowledge our shepherd, Steve Hand, for all his help, and finally
the rest of the ETH Systems Group for their useful suggestions.

References
[1] R. A. Åberg, J. L. Lawall, M. Südholt, and G. Muller. Evolv-

ing an OS kernel using temporal logic and aspect-oriented
programming. In ACP4IS ’03: Proceedings of the 2nd AOSD
Workshop on Aspects, Components, and Patterns for Infras-
tructure Software, March 2003.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler Activations: Effective kernel support for the
user-level management of parallelism. ACM Transactions on
Computer Systems, 10(1):53–79, February 1992.

[3] G. Anzinger. High resolution timers project. http:
//high-res-timers.sourceforge.net.

[4] M. Aron and P. Druschel. Soft timers: efficient microsecond
software timer support for network processing. ACM Trans-
actions on Computer Systems, 18(3):197–228, 2000.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling. In
Proceedings of the 6th Symposium on Operating Systems De-
sign and Implementation (OSDI), Dec. 2004.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP’03), pages 164–177.
ACM, 2003.

[7] J. S. I. Barrerra, A. Forin, M. B. Jones, P. J. Leach, D. Rosu,
and M.-C. Rosu. An overview of the Rialto real-time architec-
ture. Technical Report MSR-TR-96-13, Microsoft Research
(MSR), July 1996.

[8] F. Bellard. QEMU, a fast and portable dynamic translator.
In Proceedings of the USENIX Annual Technical Conference,
FREENIX Track, pages 41–46. USENIX, 2005.

[9] L. S. Brakmo and L. L. Peterson. Performance problems in
BSD4.4 TCP. SIGCOMM Computer Communication Review,
25(5):69–86, 1995.

[10] A. Chanda, A. Cox, and W. Zwaenepoel. Whodunit: Transac-
tional profiling for multi-tier applications. In Proceedings of
EuroSys 2007, Mar. 2007.

[11] M. Y. Chen, A. Accardi, E. Kıcıman, D. Patterson, A. Fox,
and E. Brewer. Path-based failure and evolution management.
In Proceedings of the 1st Symposium on Networked Systems
Design and Implementation (NSDI), Mar. 2004.

[12] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The real-
time operating system of MARS. SIGOPS Operating Systems
Review, 23(3):141–157, 1989.

[13] J. Dike. A user-mode port of the Linux kernel. In Proceedings
of the 4th Annual Linux Showcase & Conference (LINUX-00),
pages 63–72. The USENIX Association, Oct. 2000.

[14] R. Droms. RFC 2131: Dynamic host configuration protocol,
Mar. 1997.

[15] T. Gleixner and D. Niehaus. Hrtimers and beyond: Trans-
forming the Linux time subsystems. In Proceedings of the Ot-
tawa Linux Symposium (OLS’06), volume 1, pages 333–346,
Ottawa, Ontario, Canada, July 2006.

[16] V. Jacobson. Congestion avoidance and control. ACM Com-
puter Communication Review; Proceedings of the SIG-
COMM’88 Symposium, 18(4):314–329, Aug. 1988.

[17] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time systems. In Proceedings of
IEEE RTSS, pages 112–122, Dec. 1985.

[18] J. Lions. Lions’ commentary on Unix 6th edition, May 1976.
See source line 3845 ff.

[19] D. Mazières. A toolkit for user-level file systems. In Proceed-
ings of the USENIX Annual Technical Conference, pages 261–
274, June 2001.

[20] A. Morton. zc and cyclesoak: Tools for accurately measuring
system load and TCP efficiency. http://www.zipworld.com.au/
~akpm/linux/#zc.

[21] D. Mosberger and T. Jin. httperf—a tool for measuring web
server performance. SIGMETRICS Performance Evaluation
Review, 26(3):31–37, 1998.

[22] I. Park and R. Buch. Event tracing: Improve debugging and
performance tuning with ETW. MSDN Magazine, Apr. 2007.
http://msdn.microsoft.com/msdnmag/issues/07/04/ETW/.

[23] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. Multi-model par-
allel programming in Psyche. SIGPLAN Notices, 25(3):70–
78, 1990.

[24] S. Siddah, V. Pallipadi, and A. van de Ven. Getting maxi-
mum mileage out of tickless. In Proceedings of the Ottawa

Linux Symposium (OLS’07), pages 201–208, Ottawa, Ontario,
Canada, June 2007.

[25] J. Smith and C. Traw. Giving applications access to Gb/s net-
working. IEEE Network, 7(4):44–52, July 1993.

[26] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus. A
firm real-time system implementation using commercial off-
the-shelf hardware and free software. In Proceedings of the
4th IEEE Real-Time Technology and Applications Symposium
(RTAS’98), pages 112–120. IEEE, June 1998.

[27] R. W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Addison Wesley, 1994.

[28] J. Stultz, N. Aravamudan, and D. Hart. We are not getting any
younger: A new approach to time and timers. In Proceedings
of the Ottawa Linux Symposium (OLS’05), volume 1, pages
219–232, Ottawa, Ontario, Canada, July 2005.

[29] TwistedCore. http://twistedmatrix.com/trac/wiki/TwistedCore,
August 2007.

[30] G. Varghese and T. Lauck. Hashed and hierarchical timing
wheels: data structures for the efficient implementation of a
timer facility. In Proceedings of the 11th ACM Symposium on
Operating Systems Principles (SOSP’87), pages 25–38. ACM
Press, 1987.

[31] G. D. White, G. Nielsen, and S. M. Johnson. Timeout duration
and the suppression of deviant behavior in children. Journal
of Applied Behavior Analysis, 5(2):111–120, Summer 1972.

[32] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Time/utility
function decomposition techniques for utility accrual schedul-
ing algorithms in real-time distributed systems. IEEE Trans-
actions on Computers, 54(9), September 2005.

[33] T. Zanussi, K. Yaghmour, R. Wisniewski, R. Moore, and
M. Dagenais. relayfs: An efficient unified approach for trans-
mitting data from kernel to user space. In Proceedings of the
Ottawa Linux Symposium (OLS’03), 2003.

