
Application Level Ballooning for Efficient Server Consolidation

Tudor-Ioan Salomie Gustavo Alonso Timothy Roscoe Kevin Elphinstone
Systems Group, Computer Science Department UNSW and NICTA, Australia

ETH Zurich, Switzerland
{tsalomie, alonso, troscoe}@inf.ethz.ch kevine@cse.unsw.edu.au

Abstract
Systems software like databases and language runtimes typ-
ically manage memory themselves to exploit application
knowledge unavailable to the OS. Traditionally deployed
on dedicated machines, they are designed to be statically
configured with memory sufficient for peak load. In virtu-
alization scenarios (cloud computing, server consolidation),
however, static peak provisioning of RAM to applications
dramatically reduces the efficiency and cost-saving bene-
fits of virtualization. Unfortunately, existing memory “bal-
looning” techniques used to dynamically reallocate physi-
cal memory between VMs badly impact the performance of
applications which manage their own memory. We address
this problem by extending ballooning to applications (here,
a database engine and Java runtime) so that memory can
be efficiently and effectively moved between virtualized in-
stances as the demands of each change over time. The results
are significantly lower memory requirements to provide the
same performance guarantees to a collocated set of VM run-
ning such applications, with minimal overhead or intrusive
changes to application code.

1. Introduction
Virtualization in cloud computing and server consolidation
enables applications previously deployed on dedicated ma-
chines to share a physical server, reducing resource con-
sumption, energy, and space costs among other benefits. Sta-
tistically multiplexing such servers and ensuring applica-
tion performance as load changes, however, requires careful
coordination policies, and virtual machine monitor (VMM)
mechanisms like live migration and memory ballooning are
used to dynamically reallocate resources such as RAM in
virtual machines (VMs) to meet performance goals.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

 1

 10

 100

 1000

4 6 8
R

es
po

ns
e

tim
e

[s
ec

on
ds

]
(l

og
 s

ca
le

)
Database buffer pool size [GB]

Fixed memory
OS balloon

Canceled
after

1000 sec

Canceled
after

1000 sec

Canceled
after

1000 sec

Figure 1. Effect of conventional ballooning on query per-
formance (TPC-H, Q19)

These techniques work well when the OS manages ap-
plication memory via paging. However, they do not work
well when the application manages memory itself – the com-
mon case in server applications like databases and language
runtimes. Here, efficient execution depends on the program
having an accurate picture of available resident memory. Re-
allocating RAM on these systems using standard balloon-
ing severely impacts performance, leading to thrashing and,
in some cases, failure. A database, for example, allocates
memory internally from a large, fixed size pool acquired at
startup which it assumes is mostly resident. Standard bal-
looning transparently pages this pool to disk, causing the
DB to choose the wrong query plans as data it thinks in main
memory is actually not there. Figure 1 shows this effect when
running a query from the TPC-H benchmark on MySQL.
The figure shows the response time for the query with the
database operating on 4, 6, and 8 GB of actual machine mem-
ory and when the memory has been ballooned down from
10 GB to 4, 6, and 8 GB using standard ballooning tech-
niques [2]. That is, in each pair of experiments, the database
has the same amount of machine memory. However, in the
case of ballooning, the fact that some of the memory it thinks
it has is actually not there has a catastrophic effect in perfor-
mance. This effect is well known in industry and has already
been mentioned by other researchers [6].

In this paper, we present application-level ballooning
(ALB), a technique for reallocating RAM among a collec-

 0

 500

 1000

 1500

5 6 7 8 9 10

R
es

p
o

n
se

 t
im

e
fo

r
co

m
p

le
ti

n
g

X
M

ar
k

 w
o

rk
lo

ad
 [

se
co

n
d

s]

JVM Heap Size [GB]

Time doing actual work
Time being stopped due to GC

Figure 2. Response time vs. JVM heap size

tion of applications that manage their own memory running
in collocated VMs. ALB re-allocates RAM without shutting
applications down or reconfiguring them. It is fast, effective,
requires minimal changes to applications, and crucially pre-
serves the ability of an application to optimize performance
based on having an accurate idea of the available physical
RAM: with ALB, the query shown in Figure 1, has the same
performance as when there is no ballooning involved.

ALB makes several contributions. We show in Section 2
how measured performance of two quite different applica-
tions (MySQL and the OpenJDK Java runtime) usefully cor-
relates with available memory, motivating the ability to real-
locate RAM to preserve SLAs while maximizing utilization.
We then present in Section 3 the design of ALB, showing
how it coordinates application, guest OS, and VMM. We ex-
tend existing ballooning mechanisms in the system software
stack so that physical frames can be identified using virtual
addresses. We have implemented ALB in Xen with Linux as
a guest and MySQL and OpenJDK as applications.

Section 4 gives a more detailed evaluation of the ALB
mechanism, showing that ALB can quickly and efficiently
reallocate memory between applications. We show ALB’s
minimal runtime overhead versus applications, and con-
firm the conventional wisdom that guest OS paging alone
typically results in orders of magnitude of slowdown and
is not an acceptable solution, Finally, we demonstrate that
ALB can trade off performance with memory usage in both
MySQL and OpenJDK, and dynamically optimize end-to-
end performance of a two-tier application by moving mem-
ory between tiers.

2. Motivation
We target applications that manage their own memory, are
statically configured with a fixed quantity of memory, and
optimize their use of this pool to maximize performance.
Most enterprise applications fall into this category. Here
we consider databases, which extensively cache data and
results to avoid I/O, and language runtimes, which exploit
extra memory to reduce the frequency of expensive garbage
collections.

 1

 10

 100

 1000

 10000

Q
1

Q
2

Q
3

Q
4

Q
6

Q
10

Q
15

Q
19

Q
20

Q
21

R
es

p
o

n
se

 t
im

e
[s

ec
o

n
d

s]
(l

o
g

-s
ca

le
)

TPC-H Queries

4 GB 6 GB 8 GB

Figure 3. Response time vs. configured DBMS memory

2.1 Memory allocation and performance
Ballooning is useful if varying the actual memory allocated
to an application changes its performance in a stable way.
That such is the case for sever applications like databases and
language run times is easy to demonstrate. Figure 2 shows
the response time for the XMark XML benchmark [24] as
we vary the configured JVM heap size: additional memory
dramatically reduces the overhead of garbage collection, re-
sulting in significant overall speedup although the amount of
actual effective work done remains the same.

Figure 3 shows how the memory size of a database run-
ning the TPC-H benchmark [27] affects query response times
(note the log scale). Increasing available memory from 4GB
to 8GB reduces the response time of most (but not all) TPC-
H queries, sometimes by two orders of magnitude, mostly
due to reduced I/O. Databases manage their own pool of
memory because they have knowledge of access patterns and
relative page utility, knowledge not available to the OS.

Such a significant influence leads to two problems with
statically provisioning RAM to VMs, even when informed
by load profiles [25]. The first is the need to provision for
peak load, leading to inefficiencies as it is expensive to leave
memory idle, the space-time tradeoff depends heavily on
workload, and less applications can be collocated in a phys-
ical machine. The second is fragmentation when starting,
stopping, or migrating VMs, which creates a packing prob-
lem across physical machines.

2.2 Reconfiguring memory allocation
Effective application consolidation though virtualization re-
quires the ability to change the size of machine memory
available to an application. We discuss four possible solu-
tions to this problem.

Restart: We can stop the application and restart it with a
larger memory pool backed by the VMM. For example, a
DB would stop accepting queries, wait for existing queries to
complete, shut down, and restart with a larger memory pool.
It requires no changes to the DB, OS, or VMM, but entails
significant downtime and hence reduced availability. In the

case of JVMs application restart might be optimized [3, 12],
but restart is still a poor fit for high availability scenarios.

Paging: The OS can demand-page application memory
to disk, perhaps in response to VMM memory ballooning.
The problem is that server applications like databases pin
memory to RAM precisely to avoid OS level paging. Like
restart, paging can reduce an application’s RAM require-
ments without code changes. However, paging undermines
the optimizations performed by a database or garbage collec-
tor: it becomes impossible to intelligently manage database
buffers, for example. In the worst case, double paging oc-
curs: the application touches a page in its memory in order
to evict it and write it to disk, unaware that that page has
already been paged out. The page is needlessly read in from
disk (evicting another VM page in the process), only to be
written back and discarded.

Rewrite: Applications can be rewritten to rely on the OS
for resource management [7], no longer assuming a fixed
memory pool. Long-term, we believe this will happen: it is
increasingly commercially important for a database to share
a machine with other applications, for example, and design-
ing an DB in this way is a promising research topic. Short-
term, however, the engineering cost is prohibitive. Databases
and language runtimes represent decades of careful engineer-
ing, with many feature interdependencies tied to many crit-
ical legacy applications, and a radically redesigned storage
manager or garbage collector for modern hardware (physical
and virtual) will take years to mature.

Conventional ballooning: A guest OS itself shares the
characteristics of our example applications, and VMM de-
signers rejected restart, paging, and rewrite as ways to vary
the machine memory allocated to a guest OS, in favor of
memory ballooning [29]: each guest kernel incorporates a
balloon driver, typically a kernel module, which communi-
cates with the VMM via a private channel. To the guest OS,
the balloon driver appears to allocate and deallocate pinned
pages of physical memory1. To reduce the memory used by
a VM, the driver “inflates the balloon”, acquiring physical
memory from the kernel’s allocator much as a device driver
would allocate pinned DMA buffers. These pages are now
considered by the guest OS to be private to the balloon driver,
which notifies the VMM of the pages it has acquired. The
VMM converts the physical addresses to machine addresses,
and reclaims these pages for use by other VMs. Conversely,
“deflating the balloon” returns pages from the VMM to the
balloon driver, which then “frees” them in the guest OS.
Compared with the VMM transparently paging the guest,
ballooning dramatically improves performance for applica-
tions whose memory is managed by the OS. Inflating the
balloon increases memory pressure inside the guest, making

1 Henceforth, we use the customary terminology: physical memory refers to
a VM’s memory that the guest OS manages, and machine memory denotes
real RAM managed by the VMM.

to page its own memory to virtual disk, thereby making a
more informed page replacement choice than the VMM can.
As shown above, conventional ballooning does not work for
applications that manage their own memory.

2.3 Requirements for ALB
ALB enables ballooning for applications that manage their
own memory by inserting a balloon module which allocates
memory from the application’s pool and returns it to the OS
via a system call, and extending the OS to return pages to
the application via the module. The virtual memory used by
the application can therefore be dynamically varied between
a minimal level and the full configured size.

However, while attractive, ALB’s effectiveness depends
on some key assumptions. We discuss them below, and jus-
tify them with the aid of results from Section 4. First, avail-
able memory at runtime must correlate with performance for
most workloads. Figures 2 and 3 show two clear examples
of this happening. Furthermore, for most workloads we see a
clear “knee” in the curve: a threshold of memory size above
which the system always performs well. Second, ALB must
not violate application assumptions about available mem-
ory. A database query planner might base optimization de-
cisions on the statically configured memory size, whereas in
reality much of that space has been ballooned out, causing
worse performance than static configuration with less mem-
ory. This was shown in Figure 1. That is, ballooning must not
result in the application becoming delusional about where
data resides. Third, the engineering effort to modify applica-
tion, guest, and VMM must not outweigh the benefits. We
quantify the (small) code changes needed in Section 4.2.
Fourth, applications should respond quickly to changes in
memory size due to ballooning. Databases heavily caching
data require time to “warm up” newly available memory for
buffers, whereas a JVM can immediately allocate objects
from new heap space. In Section 4.7 we evaluate our appli-
cations’ responsiveness to changes in memory allocation.

Finally, ALB as currently designed is not suitable for
all applications. Some, such as PostgreSQL, delegate their
memory management to the OS (via the file system buffer
cache), rendering ALB redundant. Others, such as the Tom-
cat application server, implement another layer of memory
management above the JVM, requiring an additional layer
of ballooning.

3. System design
ALB enables the reallocation of machine memory (RAM)
between memory managers of different applications (data-
bases and JVMs) residing in different virtual machines as
depicted in 4, while preserving the performance of each as a
function of its currently available memory.

We focus in this paper on the mechanism for reallocation
between applications and mostly control ballooning manu-
ally in our experiments, though we show a simple controller

Hardware

VMM

VM1 VM2

Kernel

User

Kernel

User

Kernel Balloon
Driver

Kernel Balloon
Driver

Application Application

Memory Manager
with ALB support

Management and Monitoring System
Manual or Automatic

Memory Manager
with ALB support

(1) Notify Application of
ALB Operation

(2) increase/
decrease Appl.

balloon

(3) Syscall for ALB
MemOp

(5) Hypercall for
MemOp

(4) increase/
decrease Kernel

balloon

Figure 4. ALB System architecture & Call stack

at work in Section 4.6. We leave the policy issue of how to
autonomically reallocate memory for future work,

We implemented ALB for MySQL and OpenJDK, us-
ing a Linux guest OS and Xen. We exploit the existing bal-
loon functionality in Xen, and extend the applications to sup-
port ballooning pages to and from MySQL’s buffer pool and
OpenJDK’s heap. We modified the existing balloon driver in
Linux as it was only designed to balloon pages from the ker-
nel free list. Furthermore, ALB refers to ballooned pages by
virtual addresses, requiring additional address translation.

The balloon module in ALB-aware applications interfaces
with both the kernel and a management system. The former
occurs via a system call which frees or reclaims memory
for the application’s balloon module. While we could have
overloaded the mmap and munmap system calls to achieve
this, we chose to add a new, orthogonal system call to allow
flexibility in the OS, and to support applications which do
not allocate memory at startup using mmap.

The management system determines policy, and conveys
a target balloon size to the ALB module via an RPC call to
a local socket. Applications which already have user-facing
interfaces can also support other interfaces – for example, we
also added SQL ballooning extensions to MySQL for testing.

Figure 4 shows ALB in operation. The management sys-
tem controls the ballooning process by changing the balloon

target for the application (1). The application allocates pages
(2) and notifies the OS via a system call (3). The modified
guest OS balloon driver processes the requests (4) and makes
the memory changes visible to Xen with a hypercall (5).

We now discuss in more detail the modifications required
to MySQL, OpenJDK, and Xen/Linux to make ALB work.

3.1 The MySQL ALB module
Our balloon module for MySQL is built into the InnoDB
storage back-end. InnoDB manages its own memory, cre-
ating a fixed-size buffer pool at startup divided into 16kB
InnoDB “pages” and is used for both the lock table and data
cache. Most pages are cache, managed with an LRU list.

The balloon module uses the internal mem heap create -

in buffer and mem heap free calls to acquire and release
InnoDB pages. Once acquired, a page will not be used by
the pool for caching data and is effectively removed from the
available memory until freed.

To inflate the balloon, ALB acquires memory from the
pool and adds it to a list of ballooned InnoDB pages; there
is one such list per database instance. A list of the aligned
virtual address ranges for pages is passed via the new system
call to Linux for VM ballooning. To deflate the balloon, ALB
traverses the list of ballooned pages to be returned to the
LRU free list and notifies the kernel of the number of pages
required. The pages are then faulted in by zeroing out the
memory at the corresponding virtual addresses.

There are some subtle implementation issues. 16kB InnoDB
pages consist of four 4kB virtual pages, and InnoDB stores
accounting metadata in the first of these when the InnoDB
page is on the free list. A naı̈ve ballooning module would
therefore only be able to return 75% of the virtual pages
to the OS (first 4kB virtual page of the 16kB InnoDB page
cannot be ballooned). Our implementation of the ballooning
module in MySQL/InnoDB includes an optimization that
copies the metadata (less than 300 bytes) from the first 4KB
virtual page into a new, pre-allocated area of memory in
InnoDB. This requires about 300MB extra memory to bal-
loon 16GB, but the net result is increasing utilization to 98%.

3.2 The OpenJDK ALB module
The ALB module for OpenJDK is more involved than in
MySQL. While InnoDB uses most of the memory as cache,
the JVM passes most of its memory to the Java heap con-
trolled by the garbage collector. For the JVM we therefore
focus on ballooning in and out of the heap space, and modify
the Parallel Scavenge Garbage Collector (PSGC) that ships
with OpenJDK7.

PSGC is a generational collector; Figure 5 shows the
structure of the heap. The permanent generation holds class
metadata. The young generation holds recently-created ob-
jects, and those that have survived a few garbage collections.
Objects that survive longer are moved to the old generation.
The young generation is also split into eden and survivor

Permanent Generation

Old Generation

Young Generation
Survivors

To & From
Spaces

New objects

Eden Space

Reservation

Balloon Space

Grow/Shrink

Figure 5. Structure of OpenJDK’s parallel scavenge heap

spaces. Spaces in PSGC are bounded by start and end ad-
dresses, and all allocated memory sits between the start and
top address, which is incremented as objects are allocated.
Collection compacts space between the start and top ad-
dresses, removing holes and moving objects to other spaces.

We implemented JVM ballooning as a new, balloon space
in the young generation which can grow and increase the
pressure on the eden space when necessary, or contract and
reduce the pressure. Our current implementation only bal-
loons the eden space and does not support PSGC’s adaptive
size policy, though the design does not prevent us supporting
more spaces/generations and their adaptive resizing.

In order to resize the spaces composing the heap, we need
to compact them and prevent any other operations during
ballooning. For this reason, the ballooning operation is per-
formed at the same time as a full garbage collection. Before
returning from a full collection, we perform all outstanding
ballooning operations. This means that the cost for balloon-
ing operations in the JVM is influenced by the time needed
to perform a garbage collection, as detailed in Section 4.7. A
tighter coupling of the GC implementation with ALB would
reduce much of this overhead.

Besides the balloon reservation mechanism, a new JVM
thread monitors incoming requests for balloon operations
and invokes the garbage collector to perform a compaction
followed by the resizing of the balloon space.

We considered an alternative, garbage-collector-agnostic
solution which simply creates special Java objects to inflate
the balloon, as in a recent patent from VMware [15]. Unfor-
tunately, this approach has problems. First, translating from
an object reference to an OS virtual address, without modify-
ing the JVM, requires calling into native code via JNI (since
the object address is not available within Java).

Second, most GCs move objects among and within heap
spaces, requiring re-translation of the object address after
each collection phase. OpenJDK does offer a runtime call-
back for garbage collection completion, but it would still re-
sult in considerable runtime overhead in remapping pages.
Alternatively, objects used for memory reservation could be
pinned in memory using JNI, though the implications of this
vary between GC implementations.

Consequently, it is not possible to be fully independent
of the garbage collector. The design we adopted does mod-
ify the PSGC, but it does not depend on JNI or runtime

callbacks, it does not require address translations, and it is
not impacted by regular GC operations, thereby reducing the
code complexity of the balloon mechanism.

3.3 Changes to the Linux Kernel
To support ALB, we modified a Xen-patched Linux kernel
so that it can be notified of ALB operations via a new system
call, which required relatively little code. The new system
call takes as parameters (i) the ALB operation, (ii) the start of
the virtual memory address and (iii) the size of the memory
on which to operate. A pseudo-device or /proc file system
entry would work as alternatives to our system call approach.

The ALB operation either inflates or deflates the balloon.
The system call handles an inflate request by ensuring the
candidate virtual pages refer to resident physical pages by
faulting them in. Once resident, the physical page numbers
are obtained, and a request to increase the kernel balloon is
enqueued with Xen’s balloon driver. The kernel handles a de-
flate request by taking the number of OS pages required and
enqueueing them with the kernel balloon driver. On return,
Linux’s free list will have expanded to support subsequent
use of the deflated application pages.

3.4 Changes to the Xen Balloon Driver
Xen’s balloon driver processes operations via a kernel work
queue. For ALB operations, work items are enqueued as a
result of executing the ballooning system call.

A balloon process function dequeues work items and
either increases or decreases the kernel balloon. The same
function handles both traditional ballooning requests and
ALB requests. The main difference lies in the source of the
physical pages that are ballooned. In one case these pages
are allocated from or freed to the Linux kernel, while in the
case of ALB the physical pages are taken from and returned
to the corresponding application’s virtual memory area.

Both InnoDB and OpenJDK allocate their memory pool
through an mmap operation. The requested memory is anony-
mous and private (meaning that it can be swapped, is not
backed up by any file descriptor, and is zero-filled). Virtual
addresses from the application might or might not have been
faulted in the guest OS. For ballooning out a page, we have
to ensure that the physical page backing a virtual address
is faulted in: we use the get user pages function [14] for
this. Faulting in the pages will add entries in the guest OS’s
page table. Based on the mmap request, the physical pages
obtained from the application are anonymous, private, with a
map count of 1, and with a valid mapping pointer. Also they
are present in both the page table of the guest OS and the
kernel’s LRU list.

In contrast, the pages that are used by Xen for traditional
ballooning are newly allocated in the kernel through a call to
alloc page [14]. Besides having another state & flags, they
are not in the kernel’s LRU list.

Xen’s hypercalls for memory operations require that the
pages moved from the guest OS into the VMM be in the
same state as those obtained from a call to alloc page.
This means that pages backing up an application’s mmap-ed
memory require extrication for use by the balloon driver.

When increasing the balloon, for each page that backs an
application virtual address, we wait for the LRU to drain (i.e.,
for the page to be faulted in), clean its contents, move it from
the LRU list to the ballooned list, and clear its mappings and
anonymous state. Once the page is “sanitized” the page table
is updated so that the virtual address no longer maps to this
page. Next, the virtualization mapping between page-frame-
numbers (PFNs) and machine-frame-numbers (MFNs) is re-
moved. Finally, a hypercall notifies the VMM that the page
is free and the guest OS has released control of that memory.

When decreasing the balloon, a buffer that will be popu-
lated by the VMM is initialized with pages removed from the
list of ballooned-out pages. Once reclaimed through a hyper-
call, these pages are mapped in the page table at the correct
application virtual addresses (these can then be re-enabled
in the buffer pool/ heap). The map count, page count and
anonymous mappings are re-established, as well as the vir-
tual memory page protections. Once this is done, the page is
linked back into the kernel’s LRU list.

4. Experimental evaluation
We now present our evaluation of ALB implemented as de-
scribed in Section 3. The aim of our evaluation is fivefold:
First: We compare the performance of a conventionally
sized (i.e. statically provisioned) application with that of the
same application sized by shrinking using ALB.
Second: We show the performance characteristics over time
of a system with two tenant applications, where ALB is used
to dynamically reallocate memory between them.
Third: We examine a simple two-tier architecture, which
relies on MySQL for the data tier and on the JVM for the
business tier. In this setup, we move memory during runtime
between the data tier and the business tier, in order to reduce
the overall latency of requests to the system.
Fourth: We show a setup with four collocated database that
can react to workload changes, mitigating the performance
degradation caused by spikes in the workload through ALB.
Fifth: We measure the performance of balloon inflation and
deflation in both the database and the JVM.

4.1 Experimental setup
We used a 2 x Quad Core AMD Opteron 2376 2.3GHz Pro-
cessors, with 16GB of DDR2 RAM, and two 7200RPM 1TB
SATAII drives server for the overhead, in-flight and end-to-
end experiments (Sections 4.3, 4.4, 4.5) and a 64 Core AMD
Opteron 6276, 256GB of DDR3 RAM and 4 x OCZ Vertex 4,
256GB SATAIII SSD drives for the database collocation ex-
periment (Section 4.6). We used Xen 4.1 [31] as the VMM,
with 64bit Ubuntu 10.04 (Linux kernel version 2.6.32) with

Xen patches running in Domain0 as the management OS.
The guest OSes were paravirtualized instances of 64-bit Cen-
tOS 6.2 (Linux kernel 2.6.32), with the VMs configured with
4 virtual cores each. The database engine was 64-bit MySQL
5.5 with the InnoDB storage engine. The JVM was a 64-
bit OpenJDK7. Both MySQL and OpenJDK were compiled
with gcc 4.4.3. Xen and Domain0 boot live images via PXE
Boot and run from an in-memory file-system, removing disk
interference caused by Xen itself from our experiments.

On this platform we evaluated the characteristics of data-
base ALB using queries from the TPC-H benchmark (using
a dataset with a scale factor of 5, corresponding to approx.
5GB of raw data) and those of JVM ALB using the XMark
benchmark (over an XML dataset of 1GB) relying on the
Nux toolkit [19] with Saxon 8 [23].

4.2 Engineering cost
The cost of implementing ALB is modest requiring 870 lines
new lines to the Linux guest kernel, 229 lines to MySQL,
and 427 lines to OpenJDK. This suggests that the changes
required to application memory managers to support ALB
are small, and that most of the complexity is abstracted in
the kernel including the existing kernel-level balloon driver.

4.3 Overhead of ballooning
In order to understand the overhead of ALB, we investigate
the performance of MySQL and OpenJDK under the follow-
ing two scenarios:

Conventional: MySQL and OpenJDK run without any
changes in a guest OS. The guest runs a paravirtualized
Linux kernel, with the default Xen patches. While the guest
OS binaries run from a RAMdisk, the MySQL database files
and the XMark input XML file are stored directly on a ded-
icated real disk. The amount of memory allocated to the
InnoDB buffer pool is varied between 4 and 10GB by di-
rectly changing MySQL’s configuration file. The amount of
heap space allocated to the JVM is varied between 5 and
10GB. These provide the performance baselines for stati-
cally provisioned MySQL and OpenJDK instances.

Ballooned: MySQL and OpenJDK run with their individ-
ual ALB modifications in place, within a paravirtualized
Linux guest as above. Additionally, the guest OS now con-
tains our modifications to Linux and the balloon driver to
support ALB. Again, the guest OS binaries are on a RAM-
disk, and the data files are stored directly on a dedicated real
disk. However, in this case the amount of memory available
for the InnoDB buffer pool and the JVM’s Heap are directly
controlled via ALB. For each of the memory sizes above, we
start MySQL and OpenJDK statically provisioned with the
maximum memory size of 10G, and then balloon out pages
in order to reach the desired size. We then measure the per-
formance with the reduced amount of memory.

Due to the large dataset size (TPC-H with a scale factor
of 5) and our storage setup, run time for some of the TPC-H

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Q
1

Q
2

Q
3

Q
4

Q
6

Q
8

Q
10

Q
11

Q
13

Q
14

Q
15

Q
16

Q
17

Q
19

Q
20

Q
21

Q
22

R
es

p
o

n
se

 t
im

e
[s

ec
o

n
d

s]

TPC-H Queries

4 GB - Conventional
4 GB - ALB

(a) TPC-H Benchmark, SF5, 4GB Buffer Pool Size

 20

 40

 60

 80

 100

 120

 140

 160

Q
1

Q
2

Q
3

Q
4

Q
6

Q
8

Q
10

Q
11

Q
13

Q
14

Q
15

Q
16

Q
17

Q
19

Q
20

Q
21

Q
22

R
es

p
o

n
se

 t
im

e
[s

ec
o

n
d

s]

TPC-H Queries

8 GB - Conventional
8 GB - ALB

(b) TPC-H Benchmark, SF5, 8GB Buffer Pool Size

Figure 6. Ballooning overhead in MySQL: Conventional vs. Ballooned query response times

queries was prohibitively long. We removed from our ex-
periments queries that failed to complete within 30 minutes.
Consequently, we present results for 17 queries out of 22.
These are queries 1–4, 6, 8, 10, 11, 13–17, and 19–22. For
the XMark queries, we omit running queries 8 through 12.
These 5 queries are large “join” queries that failed to com-
plete within 2 hours (on the 1GB input XML data file). Each
XMark query is run 10 times in all the experiments, and we
report the total time.

While the omitted queries dramatically extend the dura-
tion of each experiment, they behave similarly and so do not
affect the results significantly.

4.3.1 MySQL overhead
Figure 6 shows the average response time of each query,
in the two scenarios (Conventional and Ballooned), for two
memory configurations: 4GB and 8GB. Figure 6(a) shows
that the ballooned configuration performs almost identically
to the conventional configuration for an I/O intensive setup,
where most of the data can not be cached in the buffer pool.
Similarly, Figure 6(b) shows that there is almost no overhead
between the ballooned and conventional configurations for
CPU intensive setups where most of the data is cached in
the buffer pool. From Figure 6 we conclude that there are
no substantial differences between the two configurations
we investigated. The differences we do see are caused by
randomness in the query parameters and non-deterministic
variation in the system state (e.g., MySQL’s random probing
for cardinality estimation).

4.3.2 OpenJDK overhead
Figure 7 shows total runtime for the sequence of 15 XQueries
in the XMark benchmark. Each bar depicts total run time,
divided into time the JVM did useful work in answering the
XQueries and the time the JVM spent on garbage collection
(due to the small heap). In all experiments the workload
stayed CPU bound. We draw two conclusions.

First, increasing the JVM heap reduces the time overhead
of garbage collection, thus speeding up query response time.

 0

 500

 1000

 1500

5 6 7 8 9R
es

p
o

n
se

 t
im

e
fo

r
co

m
p

le
ti

n
g

X
M

ar
k

 w
o

rk
lo

ad
 [

se
co

n
d

s]

JVM heap size [GB]

Time doing actual work
Time being stopped due to GC

Conv. ALB

Conv. ALB

Conv. ALB
Conv. ALB Conv. ALB

Figure 7. Ballooning overhead in OpenJDK: Conventional vs.
Ballooned runtime

Second, for all of the five memory configurations ranging
from 5 to 10GB for the heap size, the performance of the
ballooned configuration (“ALB”) closely resembles that of
the conventional configuration (“Conv.”).

4.4 In-flight memory resizing
We now examine the performance characteristics of using
ALB to reallocate memory between two virtual machines. In
one experiment we resize MySQL/InnoDB, in the other we
resize OpenJDK. Two clients issue the application specific
workload to stress the corresponding application.

4.4.1 Resizing MySQL’s buffer pools
For running the memory reallocation between two MySQL
instances, we first bring up a database (VM1-DB) in one VM
configured to a total of 9GB of RAM, 8 of which reserved
for the InnoDB buffer pool. We then reduce this allocation
by 4GB using ballooning, allowing us to bring up another
database (VM2-DB) in the other VM, also configured to a
total of 9GB with 8 reserved for InnoDB.

The workload used for this experiment consisted of the
TPC-H queries 2, 3, 6, 11, 16, 17, 19, 20, and 22, selected
because they have lower response times and allow us to
present the throughput of the system as a function of time
without having to aggregate over long periods.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0 60 120 180 240 300 360

T
h
ro

u
g
h

p
u

t
[q

u
er

ie
s/

m
in

u
te

]

Time [minutes]

VM1-DB VM2-DB

Figure 8. TPC-H Benchmark throughput evolution as we reallocate memory (4GB) between two DBs across VMs

During a 6 hour test, we changed the buffer pool size of
the InnoDB storage engines every 2 hours by reallocating
4GB back and forth between the two databases using ALB.
After 120 minutes, we reduce the buffer pool of VM2-DB
by 4GB and increase that of VM1-DB by the same amount.
After 240 minutes, we reverse the process.

Figure 8 shows the throughput of the two systems as a
function of time. The throughput is reported every 2 minutes.
When the in-flight resizing operations occur, the throughput
of the two systems change. At minute 120 we observe a
rapid drop in throughput for VM2-DB (a large number of
ballooned-out InnoDB pages will lead to more disk access
for answering queries). At the same time, a steady increase
in the throughput of VM2-DB is observed.

The gradual increase in throughput for VM2-DB is caused
by the database warm-up period. It takes time for the new
pages that were ballooned-in to the buffer pool to be actively
used. Here we are performing a somewhat extreme experi-
ment in which we move 4GB of memory, meaning that 50%
of the buffer pool needs to be warmed up to reach steady-
state performance. The same behavior can be observed for
the in-flight resizing performed at minute 240.

Two features of the results stand out: the oscillating
throughput and the apparently long delay before the data-
base can fully exploit newly ballooned-in pages. The oscil-
lating throughput is a consequence of the nature of the work-
load. The queries used in the workload have very different
response times. The dataset is too large for main memory,
forcing InnoDB to frequently access the disk. This behavior
prevents us from running a large number of clients in order
to observe a more stable throughput, as disk contention from
multiple clients would make this experiment prohibitively
slow. Also, the wide variation in response time across differ-
ent queries (see Figure 3) leads us to aggregate throughput
figures over bins of 2 minutes. The apparently long warm-
up times (minutes 120-to-130 for VM1-DB and 240-to-250
for VM2-DB) are caused by the cache warm up time. The
queries running at the point when memory is ballooned-in
determine how fast the buffer pool is populated. For refer-
ence, the same warmup phenomenon is seen in the figure at
time 0, when the database starts with an empty data cache.

4.4.2 Resizing the JVM heap
As in the previous experiment we start the VMs sequentially.
The first VM, configured to a total of 8GB, out of which
we allocate 7GB to VM1-JVM. These 7GB are split into
the different parts of the heap: a fixed 3GB old generation
space, and a fixed 4GB for the young generation, including
a 256MB to-space and a 256MB from-space, leaving 3.5GB
for the eden space. We continue expanding the JVM balloon
over 2GB from the eden space. With the newly released
memory, we can start the second VM, giving it the same total
memory of 8GB, out of which we allocate 7GB to VM2-
JVM (again with 3GB for the old generation, 3.5GB for eden
space and 256MB for to-space and 256MB for from-space).

Similar to the MySQL in-flight-resizing experiment, we
run a 6 hour test, during which we reallocate 2GB of memory
between the heaps (eden-space) of the two JVMs every 2
hours. The results are presented in Figure 9. At minutes
120 and 240 we notice how the throughputs of the two
JVMs change. When the eden spaces increase from 1.5GB to
3.5GB (minute 120 for VM1-JVM and minute 240 for VM2-
JVM), we see an instant increase in throughput. Comparing
to the case of buffer pool of MySQL, the JVM can instantly
make use of the extra memory without needing to warm up
a cache.

4.5 An end-to-end example
ALB is not restricted to reallocating memory between the
same type of application. In this experiment we move mem-
ory between MySQL and OpenJDK. The motivation is a
simple two tier architecture, in which the data tier is imple-
mented by a MySQL database running in a VM, the busi-
ness tier is implemented by a Java application that processes
XQueries, running in another VM. The communication with
clients is done via a minimal socket-based interface for re-
ceiving queries and sending results back.

The synthetic workload that drives this benchmark re-
quires that for each request a set of database queries needs
to be run in the data-tier. Based on their results, a series of
XML document processing operations will be performed in
the business tier, and the results sent back to the client.

In the synthetic workload, for each client request, we
perform a series of database queries (we ran the TPC-H

 0
 5

 10
 15
 20
 25
 30
 35

 0 60 120 180 240 300 360

T
h
ro

u
g
h

p
u

t
[q

u
er

ie
s/

m
in

u
te

]

Time [minutes]

VM1-JVM VM2-JVM

Figure 9. XMark Benchmark throughput evolution as we reallocate memory (4GB) between two JVMs across VMs

queries 2, 3, 6, 11, 16, 17, 19, 20 and 22) on a TPC-H SF5
dataset, followed by a series of XMark queries (1-7 and 13-
20) on a 1GB input XML file. The response sent back to the
client is the total runtime for each individual query.

The experiment starts by creating a VM with a total of
9GB of RAM, in which we start VM1-DB, a MySQL in-
stance with a buffer pool of 7.5GB. We then balloon 1.5GB
out from the database, reducing its actual buffer pool to 6GB.
Next we start a second VM with a total of 7GB of RAM,
in which we create a VM2-JVM with a fixed heap of 6GB
(3GB old generation, 2.5GB eden-space and the remaining
0.5GB equally split among the to/from spaces). The initial
configuration Static in Table 1, runs the workload without
performing any memory movement between VM1-DB and
VM2-JVM. VM1-DB runs with an actual buffer pool of 6GB
and VM2-JVM runs with a fixed heap of 6GB. The second
configuration Dynamic in Table 1 starts in the same config-
uration as the Static one, but reallocates 1.5GB from VM2-
JVM to VM1-DB before performing any database queries,
and then moves the 1.5GB back to VM2-JVM before per-
forming any XML processing.

DB XML Balloon Total
Config Queries Queries Ops

(sec) (sec) (sec) (sec)
Static 2077.25 455.97 0 2533.22
Dynamic 164.57 450.37 21.53 638.00

Table 1. Runtimes for whole system: Static vs. Dynamic configs.

Table 1 presents the runtime break down for the two sys-
tem configurations. For the Static configuration we do not
spend any time on doing ballooning operations. In the Dy-
namic configuration we see that at the cost of 2 ballooning
operations (each taking approx. 21 sec.) an overall improve-
ment of 4x is gained. This approach of moving memory be-
tween the data and business layer only makes sense if the
gain in query response latency covers the cost of the bal-
looning operations. Our current implementation of ALB is
not suitable for fast, interactive systems, where the overall
latencies need to fall under 5 sec.

4.6 Collocating database servers
We now present a large scale experiment that highlights the
benefits of ALB in the context of collocated database servers.

For the experiment we used a 64 core, 256GB RAM AMD
machine, running Xen: Domain0 on 16 cores with 2GB of
RAM and 4 VMs, each having 12 cores 36GB of RAM.
Within each VM a MySQL / InnoDB database operates on a
TPC-E [26] dataset of 105GB (TPC-E scale factor of 5000
customers). The TPC-E dataset consists of brokerage trans-
actions corresponding to different customers and the work-
load comprises mostly fast running read-transactions. All 4
databases have an initial InnoDB buffer pool of 8GB which
can be increased up to 24GB through ALB.

The experiment consists of running a base workload (10
client threads, targeting 1000 of the 5000 TPC-E customers
in the dataset) for a duration of 5h. An extra workload (20
client threads, targeting any of the 5000 customers in the
dataset) increases the load on a database server. When a
server receives extra load, the ALB will be triggered to
increase the size of the buffer pool on the pressured database.
Increasing the buffer pool mitigates the drop in performance
due to the extra load. Once the extra load stops, we shrink
the buffer pool.

Figure 10 shows the throughput of the 4 databases, each
under a constant base workload and spurious extra work-
loads. At the 30 minute mark the first database starts receiv-
ing the extra workload. Due to pollution of the buffer pool
(more data touched by the extra clients), there is an abrupt
drop in throughput (top line in Figure 10). A monitoring sys-
tem detects the extra load and the drop in throughput and
reacts by increasing the buffer pool of DB1 from 8GB to
16GB 2. Within 5 minutes, the throughput of DB1 recov-
ers. After a total run of 40 minutes, the extra workload stops.
When the extra workload stops (minute 70), the performance
drop due to the reduced offered load and because the buffer
pool still holding pages that are irrelevant for the base work-
load. Within 2 minutes, the throughput stabilizes again and
the monitoring system initiates the shrinking of the buffer

2 Implementing a monitoring system that triggers the buffer pool increase as
well as determining the actual correlation between offered load and resource
requirements are not in the scope of our work, but have been extensively
studied [6, 25]

0

200

400

DB1 − Throughput

0

200

400

DB2 − Throughput

0

200

400

DB3 − Throughput

0

200

400
DB4 − Throughput

T

hr
ou

gh
pu

t t
ps

E

0 50 100 150 200 250 300

 E
xt

ra
 L

oa
d

Extra Load
 to DB1

Extra Load
 to DB2

Extra Load
 to DB3

Extra Load
 to DB4

Time (minutes)

Figure 10. Collocating database servers: reacting to changes in workload

size of DB1 back to 8GB (minute 75). The second drop in
throughput is caused by the shrinking of the buffer pool. Fi-
nally, at minute 80 minute the throughput of DB1 is stabi-
lized. Extra workload events happen at minutes 90, 150 and
210 for DB2, DB3 and DB4 respectively. The behavior is the
same as in the case of DB1.

This shows that ALB can be used in real scenarios of
database collocation in virtualized environments and how
spikes in load can be handled on the fly, without stopping
the database, just by increasing the amount of cached data.

The reaction time to increasing the InnoDB buffer pool
is determined by two factors: query diversity and the I/O
subsystem. A high number of concurrent queries will lead
to a fast cache population. Higher throughput from the I/O
subsystem also speeds up cache population. In the current
experiment we found that the time required to warm up the
pages in the InnoDB buffer pool is bound by the I/O sub-
system. Doubling the number of clients, the 90 percentile
response time increases for some transactions by as much as
100% with an average of 62%. With 10 clients, the 90 per-
centile of response times of the transactions was in the range
of [30-350]msec while with 20 clients it was [30-580]msec.
This means that more load might decrease the cache warm up
time, but would increase latency. Investigating the I/O sub-
system, we saw that disks with fast seek times improve disk
throughput (the TPC-E workload does many random data
accesses [4]). For this collocation experiment, each data-
base was stored on a OCZ Vortex 4, 256GB SSD drive. Us-
ing these drives (instead of traditional disks), the bottleneck
shifted from the disk drives to Xen’s VMM, where all I/O
interrupts for the VMs were handled only on one core (hav-
ing 100% utilization). Despite trying to balance interrupts
among the VMM’s 16 cores – we did not succeed. We spec-
ulate though that balancing the interrupts among more cores

would further reduce the time required to warm up the data-
base’s buffer pools when increased.

4.7 ALB performance
We evaluate the performance of ALB operations by measur-
ing the time it takes to increase or decrease the balloon, at
application level, by a certain number of pages. We recorded
the ALB operation response times (in Table 2), both for
MySQL and for OpenJDK.

InnoDB Pages (16K) Grow(sec) Shrink(sec)
32768 Pages (0.5 GB) 3.99 0.77
65536 Pages (1 GB) 7.57 1.51
131072 Pages (2 GB) 16.07 3.02
JVM Pages (4K) Grow(sec) Shrink(sec)
131072 Pages (0.5 GB) 11.28 (2.14) 9.48 (0.41)
262144 Pages (1 GB) 16.34 (4.27) 9.96 (0.82)
524288 Pages (2 GB) 18.92 (7.68) 10.91 (1.65)

Table 2. ALB Grow/Shrink operations: Response times

For the case of InnoDB, we observe that there is a lin-
ear increase in the duration of both ALB operations with the
ballooned size. The latency of the operations includes the
application-level ballooning time and the kernel-level bal-
looning time. For InnoDB pages, the application level bal-
looning time is dominated by the memcpy operation of the
InnoDB page metadata. This cost is symmetrical for the
grow and shrink operations. The large 5x difference between
growing and shrinking the balloon comes from the opera-
tions that we perform in the kernel. Compared to traditional
ballooning, ALB operates on pages originating from mmap-
ed memory. Before we can place a page into the balloon, we
need to remove it from the page’s zone LRU. Unfortunately

this operation can only be done under a kernel zone lock. The
cost of acquiring this lock for pages ballooned out makes
the grow operation more expensive and limits the achiev-
able throughput for ballooning operations. We expect that
improvements to the kernel, like the adoption of lock free
data structures [5], would reduce the time needed to perform
ALB balloon-increase operations.

For the case of the JVM, two numbers are presented for
the grow and shrink operation. The first number is the total
time it takes to perform the ballooning operation (both ap-
plication and kernel part). The number in parentheses gives
the total time spent in the kernel for completing the balloon-
ing operation. For the kernel time, the same remarks apply
as in the case of InnoDB. The large amount of time spent in
the JVM for completing the ballooning operation is a conse-
quence of the full garbage collection operation that we per-
form before each ballooning operation in the JVM. Section 6
looks into ways to further improve this.

5. Implementing ALB
This section conveys our experience in implementing the
ALB modules for OpenJDK and MySQL/InnoDB as a set
of engineering guidelines that can be reused in adding ALB
modules to other applications.

ALB is a mechanism suited for applications that take
memory management under their own control, bypassing the
OS. In implementing an ALB module the developer needs to
answer a set of questions:

1. What does the application use the memory for?

2. What data structure describes the free/used memory?

3. What are the policies for allocating and freeing memory?

4. How can the data structure and the policy be adapted to
support memory reservation?

For most server class applications that do their own memory
management, we have observed that they fall into two broad
categories. On one hand there are systems that use the mem-
ory for caching (databases, web or generic caching systems).
On the other hand we have runtime systems in which garbage
collectors use the memory for object allocation.

Among caching systems, DMBSes like MySQL or Ora-
cle rely on data buffers for faster access to data stored on
disk. Web caches like Squid use main memory caches for re-
ducing request latencies and bandwidth usage. Memcached
enables general purpose key-value caches for any type of ap-
plications. What all these systems have in common is that
they use the main memory they have under control for de-
creasing latency. The supporting data structures and policies
for caching systems are often quite simple: linear lists and
hashmaps with some sort of LRU policy. Consequently, a
memory reservation mechanism is straight forward to im-
plement. The most complex representatives of this category
are probably the database systems. As we have seen with

MySQL/InnoDB, the cost of implementing an ALB module
was modest. For all other caching systems, the approach will
be similar.

As garbage collectors (GCs) of runtime systems come
in very many flavours: copying, mark-sweep, generational,
world-stop vs. incremental vs. concurrent, etc., the support-
ing data structures and policies are more complex than in
the case of caching systems. Still, we have shown in this pa-
per that implementing an ALB module for a given GC (i.e.,
PSGC) is possible with little coding overhead, as long as the
semantics of the supporting data structures are understood.

Once a memory reservation mechanism is implemented
for an application, it needs to be controlled. Either the appli-
cation polls for changes in the reservation or it is externally
notified. In either case, an ALB control thread must be added
to the application.

6. Discussion
While ALB yields significant benefits, a valid concern is to
what extent it generalizes to other databases or language run-
time systems. A good way to frame this discussion is to
distinguish between, on the one hand, the interface allow-
ing runtime dynamic memory reallocation between database
memory pools or JVM Heaps located in different virtual ma-
chines, and on the other hand, the particular implementation
technique we have chosen.

In the first case, existing systems lack a specialized in-
terface between the applications and the OS to coordinate
memory use. The existing interfaces between OS and appli-
cations only expose basic memory operations, and missing
is an API to allow an application to release explicitly iden-
tified memory pages, effectively giving the OS the informa-
tion needed to make an informed choice of pages to reallo-
cate from the database. Where the OS runs in a VM, this
information could be propagated to the VMM improving its
reallocation choice also. The interface needs to support the
reverse direction also, allowing the application to signal its
need for more memory when required.

We argue from our results that providing such an interface
has tangible benefits in resource management, and also that
the interface itself can be relatively application-agnostic –
there is little in the interface we have designed that is specific
either to MySQL/ InnoDB, OpenJDK, or to our ballooning
implementation.

The second question is one of implementation, arising
from the application’s assumption that memory is dedicated
to its use. In databases, a mechanism complementing the ex-
isting database memory manager(s) could use an interface
such as ours to dynamically adjust the size of memory pools.
In JVMs, such a mechanism could have a tighter integration
with the garbage collector, up to the point where the noto-
rious “java.lang.OutOfMemoryError” errors are handled by
requesting memory from another VM rather than crashing.

We sidestep such a mechanism in order to minimize
the changes needed to existing code bases, and instead use
application-internal routines to “allocate” memory to release
via the balloon. For us, this technique has worked remark-
ably well, and we feel ballooning as an implementation will
generalize to many (though not all) buffer managers and lan-
guage runtime systems. Where it does not work, an open
question is whether an alternative implementation would be
possible without significant redesign.

On the database side, an interesting question is what hap-
pens to query-plan optimization in the case of ALB. While
the TPC-H workload we show in this paper did not exhibit
changes in performance due a smaller buffer pool than that
advertised to MySQL, there may naturally be query optimiz-
ers that could make better choices based on the current (ac-
tual) size of the buffer pool. Treating the buffer pool as a
variable in the system rather than a constant might improve
query optimization.

Even though the current speed of OpenJDK ALB oper-
ations is sufficient for many scenarios, we want to further
investigate possible optimizations by extending the design
of GCs so that ALB is a first class citizen. Determining the
heap generation and space in which ALB memory should be
ballooned-in or -out based on specific workloads is of partic-
ular interest.

Complementing the memory managers in more complex
systems with a ballooning module can be challenging. While
reserving certain memory in the application is possible, the
semantics for the reservation are not clear. If databases or
language runtime systems are made aware of the ballooning
process, some of the possible side-effects of ALB could be
avoided.

A requirement (as we point out Section 2.3) for ALB to
be useful is the correlation of memory size and performance.
We assume no specific memory-vs.-performance model in
this work, since we agree that this is likely application-
specific, and instead view this as a policy issue. Such models
are an active research area: recent papers address precisely
this problem in databases ([6, 20, 25]), assuming no changes
to the database. Robust behavior of databases under load is
an open problem both in research and in industry ([28]).

An implication of our work is that if server applications
can be changed to both emphasize predictability and expose
their cost functions (like the ideas presented in [7]), this will
enable better correlation of resource requirements with per-
formance, and further increase the effectiveness of ALB as
a mechanism for reducing over-provisioning in virtualized
environments. Future systems designed for virtualized envi-
ronments and architected to operate a balloon can also in-
troduce more flexibility on both sides of the application/OS
boundary.

We decided not to discuss ballooning policy in the pa-
per. The performance correlation mentioned above is only
one reason why policy for ALB is a complex and open ques-

tion. For instance, a database balloon driver may use differ-
ent types of memory (buffer, working memory, result caches,
etc.), each calling for different policies and with different im-
plications for the application. There are also several policy
types: arbitration of resources across applications and man-
agement of an application’s internal demands both require
mechanisms not yet available at the application level and
which demand a richer interface between applications and
the VM. ALB is, therefore, a first step in tackling this generic
problem, but is also immediately applicable: static solutions
like those proposed by [25] can also use ALB for dynamic
reconfiguration.

7. Related Work
Effectively managing memory in VMMs is an important
topic. In addition to ballooning, modern VMMs also employ
other techniques.

Content-based memory de-duplication reduces memory
consumption by copy-on-write sharing of identical pages
across the VMs [8, 16, 29]. Orthogonal to ALB, dedupli-
cation can be used to further reduce memory pressure within
a physical machine.

Heo et al. [9] use control theory to meet memory uti-
lization targets when overbooking memory with balloon-
ing in Xen-based consolidation environments. The approach
requires measurable memory demands to drive the control
loop. Autocontrol [21] also applies control theory to opti-
mize resource assignment to VMs, focusing on CPU and disk
bandwidth. ALB provides a mechanism which could extend
Autocontrol’s policy engine to RAM.

MEB [33] does dynamic memory balancing for VMs
based on runtime statistics from the VM kernel in order to
optimize performance of memory dependent applications.
MEB uses OS-level ballooning in Xen to re-configure mem-
ory. Figure 1 shows that this is not applicable to applications
which manage their own memory, though it might fare better
with some systems like PostgreSQL which use the OS disk
cache for this purpose.

Live VM migration can also be used to relieve memory
pressure in an overcommitted physical machine [30]. Migra-
tion is complementary to our approach, but does not address,
for example, the poor performance of a database provisioned
with less memory than initially configured.

Alonso and Appel [1] observe that the traditional model
of virtual memory working sets is not always efficient for
garbage collected systems or for databases caches. They pro-
pose a “memory advice” server which can be used to adjust
application working sets. ALB as a mechanism for dynami-
cally adjusting the working sets of applications could be en-
hanced with such a monitoring and management service.

7.1 Language runtime performance in VMs
Khanna et al. [13] present a bin-packing approach for identi-
fying the best way to consolidate services on hardware, based

on the applications’ requirements. CRAMM [32] enables
garbage collected applications to predict appropriate heap
sizes, making the case for dynamic reallocation of RAM.
CRAMM would provide a policy framework to drive ALB’s
reallocation mechanism. Hertz et al. [10] also identify the
need for dynamic reconfiguration of heap sizes for language
runtimes (C# in their system), and provide a way of shar-
ing memory among different runtimes, within the same OS,
compared to ALB which achieves this among different ap-
plications in different VMs. Hines et al. [11] present pol-
icy framework (Ginkgo) which correlates application perfor-
mance to its memory needs in order to satisfy capacity and
performance constraints using runtime monitoring. They dy-
namically resize the JVM heap using a balloon process that
allocates and deallocates memory through JNI.

Finally, a recent patent from VMware [15] describes bal-
looning in JVM by allocating Java objects. As discussed
in Section 3.2, ALB takes the alternative approach to both
Ginkgo and VMware by integrating ballooning with the
garbage collector.

7.2 Databases on VMs
Most recent work on running databases in VMs has focused
on configuring the VMs to optimize the behavior databases
in multi-tenant scenarios. Soror et al. [25] tune database per-
formance by controlling the underlying VM. They argue that
if resources are distributed to databases regardless of actual
load, performance will suffer relative to a load-aware alloca-
tion. In this approach, resource distribution is static but can
nonetheless be improved with successive deployments. Their
incremental load monitoring proposal can be combined with
ALB to implement a truly dynamic tuning mechanism.

Ozmen et al. [20] optimize data layout on the storage
layer by examining the load characteristics of each DBMS
tenant, and is orthogonal to ALB. Their solution also works
for non-VM DBMS.

Minhas et al. [17] show how to use the availability facil-
ities of VMMs to provide fault tolerance in virtualized data-
bases through state machine replication. This approach can
be combined with ALB to allow a new replica of a database
to receive more memory on start, improving the performance
of the backup and avoiding further failures if the initial inci-
dent was due to lack of memory.

Curino et al. [6] looked at consolidation gains of DBs
on VMMs and report up to 17:1 consolidation ratios for the
analyzed workloads. They note that existing OS ballooning
techniques for consolidating databases are useless as they are
not integrated with the DB’s buffer pools.

Microsoft’s SQL Hyper-V/VM [22] permits dynamic
memory configurations for SQL Server, but does not present
any details on how this is achieved and how the database
reacts to memory changes. In [18], SQL-VM is presented as
a solution for resource (CPU, I/O and memory) sharing in
multi-tenant database-as-a-service systems.

In contrast to white-papers and patents form the industry,
we present a detailed technical description and reproducible
performance analysis of ALB across several systems. More-
over, ALB is generic and can be extended to any applications
managing their own memory (whether a buffer pool or run-
time heap), whereas VMware focuses only on a JVM heap
and HyperV only on the MS SQL database.

8. Conclusions
We demonstrate ALB as a mechanism to efficiently vary the
memory available to two server applications: MySQL and
OpenJDK. We have shown that resulting performance is no
different to that of a statically configured application of the
same size, with no need for restart with a new configura-
tion. Ballooning creates memory pressure within the appli-
cation itself forcing it to make more well-informed decisions
on buffering I/O or garbage collection than either the OS or
VMM can do on its behalf. In the case of database colloca-
tion, we showed that ALB can be used to react to changes in
the workload such that system throughput does not degrade.
This is achieved by on-the-fly buffer pool resizing rather then
having an over-provisioned buffer pool.
ALB piggy-backs onto existing OS-level ballooning, creat-
ing an end-to-end solution for memory reallocation, coordi-
nated across all three software layers: VMM, OS, and ap-
plication. The changes required to implement ballooning are
small and limited to the OS (and its balloon driver) and ap-
plication itself.

We expect rigid server applications to evolve to support
varying memory usage in the long term. However, ALB is a
simple, efficient, readily implementable technique available
now to vary memory usage in rigid applications on shared
machines. It is an enabling mechanism for new avenues of
research in dynamically provisioning memory in previously
rigid applications.

References
[1] R. Alonso and A. W. Appel. An advisor for flexible working

sets. In Proc. of the 1990 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, SIGMET-
RICS ’90, pages 153–162, New York, NY, USA, 1990. ACM.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proc. of the nineteenth ACM symposium on
Operating systems principles, SOSP ’03, pages 164–177, New
York, NY, USA, 2003. ACM.

[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot – A technique for cheap recovery. In Proc. of the
6th conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, OSDI’04, pages 3–3, Berkeley,
CA, USA, 2004. USENIX Association.

[4] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons,
R. Johnson, I. Pandis, and R. Stoica. TPC-E vs. TPC-C: char-
acterizing the new TPC-E benchmark via an I/O comparison
study. SIGMOD Record, 39(3):5–10, Feb. 2011.

[5] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. Scalable
address spaces using RCU balanced trees. In Proc. of the sev-
enteenth international conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XVII, pages 199–210, New York, NY, USA, 2012. ACM.

[6] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan.
Workload-aware database monitoring and consolidation. In
Proc. of the 2011 ACM SIGMOD International Conference
on Management of data, SIGMOD ’11, pages 313–324, New
York, NY, USA, 2011. ACM.

[7] J. Giceva, T. Salomie, A. Schüpbach, G. Alonso, and
T. Roscoe. COD: Database/Operating System Co-Design.
In 6th Biennial Conference on Innovative Data Systems Re-
search, CIDR ’13. www.cidrdb.org, 2013.

[8] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference engine:
harnessing memory redundancy in virtual machines. Comm.
of ACM, 53(10):85–93, Oct. 2010.

[9] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory overbook-
ing and dynamic control of Xen virtual machines in consoli-
dated environments. In Proc. of the 11th IFIP/IEEE interna-
tional conference on Symposium on Integrated Network Man-
agement, IM’09, pages 630–637, Piscataway, NJ, USA, 2009.
IEEE Press.

[10] M. Hertz, S. Kane, E. Keudel, T. Bai, C. Ding, X. Gu, and J. E.
Bard. Waste not, want not: resource-based garbage collection
in a shared environment. In Proc. of the international sympo-
sium on Memory management, ISMM ’11, pages 65–76, New
York, NY, USA, 2011. ACM.

[11] M. R. Hines, A. Gordon, M. Silva, D. Da Silva, K. Ryu,
and M. Ben-Yehuda. Applications Know Best: Performance-
Driven Memory Overcommit with Ginkgo. In Proc. of the
2011 IEEE Third International Conference on Cloud Comput-
ing Technology and Science, CLOUDCOM ’11, pages 130–
137, Washington, DC, USA, 2011. IEEE Computer Society.

[12] InnoDB LRU Dump/Restore http://www.percona.

com/docs/wiki/percona-server:features:

innodb_lru_dump_restore, 29.11.11.

[13] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application Per-
formance Management in Virtualized Server Environments.
In Network Operations and Management Symposium, 2006.
NOMS 2006. 10th IEEE/IFIP, NOMS ’06, pages 373 –381,
Washington, DC, USA, April 2006. IEEE Computer Society.

[14] R. Love. Linux Kernel Development, 3rd edition. Addison-
Wesley, 2010.

[15] R. Mcougall, W. Huang, and B. Corrie. Cooperative memory
resource mamagent via application-level balloon. Patent Ap-
plication US20110320682, 12 2011.

[16] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman. Satori:
enlightened page sharing. In Proc. of the 2009 conference on
USENIX Annual technical conference, USENIX’09, pages 1–
1, Berkeley, CA, USA, 2009. USENIX Association.

[17] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga,
K. Salem, and A. Warfield. RemusDB: Transparent High
Availability for Database Systems. PVLDB, 4(11):738–748,
Nov. 2011.

[18] V. Narasayya, S. Das, M. Syamala, B. Chandramouli, and
S. Chaudhuri. SQLVM: Performance Isolation in Multi-
Tenant Relational Database-as-a-Service. In 6th Biennial
Conference on Innovative Data Systems Research, CIDR ’13.
www.cidrdb.org, 2013.

[19] Lawrence Berkeley National Lab: Nux toolkit.
http://acs.lbl.gov/software/nux/api/nux/xom/

sandbox/XQueryBenchmark.html, 5.01.12.

[20] O. Ozmen, K. Salem, J. Schindler, and S. Daniel. Workload-
aware storage layout for database systems. In Proc. of the 2010
ACM SIGMOD International Conference on Management of
data, SIGMOD ’10, pages 939–950, New York, NY, USA,
2010. ACM.

[21] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In Proc. of the 4th ACM European
conference on Computer systems, EuroSys ’09, pages 13–26,
New York, NY, USA, 2009. ACM.

[22] Running SQL Server with Hyper-V Dynamic Mem-
ory. http://msdn.microsoft.com/en-us/library/

hh372970.aspx, 17.10.12.

[23] Saxon XSLT and XQuery Processor. http://sourceforge.
net/projects/saxon/, 5.03.12.

[24] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu,
and R. Busse. XMark: a benchmark for XML data manage-
ment. In Proc. of the 28th international conference on Very
Large Data Bases, VLDB ’02, pages 974–985. VLDB Endow-
ment, 2002.

[25] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem,
P. Kokosielis, and S. Kamath. Automatic virtual machine
configuration for database workloads. ACM Trans. Database
Syst., 35(1):7:1–7:47, Feb. 2008.

[26] TPC-E. http://www.tpc.org/tpce/, 17.10.12.

[27] TPC-H. http://www.tpc.org/tpch/, 17.10.12.

[28] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and
D. Kossmann. Predictable performance for unpredictable
workloads. Proc. VLDB Endow., 2(1):706–717, Aug. 2009.

[29] C. A. Waldspurger. Memory resource management in
VMware ESX server. SIGOPS Oper. Syst. Rev., 36(SI):181–
194, Dec. 2002.

[30] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-
box and gray-box strategies for virtual machine migration. In
Proc. of the 4th USENIX conference on Networked systems
design & implementation, NSDI’07, pages 17–17, Berkeley,
CA, USA, 2007. USENIX Association.

[31] Xen Hypervisor 4.1. http://xen.org/, 29.11.11.

[32] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss.
CRAMM: virtual memory support for garbage-collected ap-
plications. In Proc. of the 7th symposium on Operating sys-
tems design and implementation, OSDI ’06, pages 103–116,
Berkeley, CA, USA, 2006. USENIX Association.

[33] W. Zhao, Z. Wang, and Y. Luo. Dynamic memory balancing
for virtual machines. SIGOPS Oper. Syst. Rev., 43(3):37–47,
July 2009.

