
SnailTrail: Generalizing Critical Paths for Online Analysis of Distributed
Dataflows∗

strymon.systems.ethz.ch

Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki Kalavri,
Desislava Dimitrova, Sebastian Wicki, Zaheer Chothia, Timothy Roscoe

Systems Group, Department of Computer Science, ETH Zürich

firstname.lastname@inf.ethz.ch

Abstract
We rigorously generalize critical path analysis (CPA) to
long-running and streaming computations and present
SnailTrail, a system built on Timely Dataflow, which
applies our analysis to a range of popular distributed
dataflow engines. Our technique uses the novel metric
of critical participation, computed on time-based snap-
shots of execution traces, that provides immediate in-
sights into specific parts of the computation. This allows
SnailTrail to work online in real-time, rather than re-
quiring complete offline traces as with traditional CPA.
It is thus applicable to scenarios like model training in
machine learning, and sensor stream processing.
SnailTrail assumes only a highly general model of

dataflow computation (which we define) and we show
it can be applied to systems as diverse as Spark, Flink,
TensorFlow, and Timely Dataflow itself. We further
show with examples from all four of these systems that
SnailTrail is fast and scalable, and that critical partici-
pation can deliver performance analysis and insights not
available using prior techniques.

1 Introduction

We present a generalization of Critical Path Analysis
(CPA) to online performance characterization of long-
running, distributed dataflow computations.

Existing tools which aggregate performance informa-
tion from servers and software components into visual
analysis and statistics [2, 30] can be useful in showing
what each part of the system is doing at any point in time,
but are less helpful in explaining which components in a
complex distributed system need improvement to reduce
end-to-end latency.

On the other hand, tools which capture detailed indi-
vidual traces through a system, such as Splunk [9] and

∗This work was partially supported by the Swiss National Science
Foundation, Google Inc., and Amadeus SA.

VMware LogInsight [3], can isolate specific instances
of performance loss, but lack a “big picture” view of
what really matters to performance over a long (possibly
continuous) computation on a varying workload.

In this paper, we show that the design space for useful
performance analysis of so-called “big data” systems is
much richer than currently available tools would suggest.

Critical Path Analysis is a proven technique for gain-
ing insight into the performance of a set of interacting
processes [36], and we review the basic idea in Section 2.
However, CPA is not directly applicable to long-running
and streaming computations for two reasons. Firstly, it
requires a complete execution trace to exist before anal-
ysis can start. In modern systems, such a trace may be
very large or, in the case of stream processing, unbounded.
Secondly, in a continuous computation, there exist many
critical paths (as we show later on), which also change
over time, and there is no established methodology for
choosing one of them. It is therefore important to ag-
gregate the paths both spatially (across the distributed
computation) and temporally (as an evolving picture of
the system’s performance).

According to prior work [5, 37], the accuracy of CPA
increases with the number of critical paths considered.
However, existing approaches require full path material-
ization in order to aggregate information from multiple
critical paths. Thus, they restrict analysis to k critical
paths, where k is much smaller than the total number of
paths in the trace. In open-ended computations where
analysis is performed on trace snapshots and all paths
are of equal length, materializing all paths is impractical,
especially if the analysis needs to keep up with real time.
For instance, in our experiments, the number of paths in a
10-sec snapshot of Spark traces is in the order of 1021.

This paper’s first contributions (in Section 3) are defi-
nitions of Transient Critical Path, a modification of clas-
sical critical path applicable to continuous unbounded
computations, and Critical Participation (CP), a metric
which captures the importance of an execution activity

http://strymon.systems.ethz.ch

0 50 100 150
Snapshot

0.0

0.1

0.2

0.3

0.4

0.5
C

P

0 50 100 150
Snapshot

%
w

ei
gh

t
Driver scheduling

Figure 1: CP-based (left) and conventional profiling
(right) summaries of Spark’s driver activity on BDB [1]
from [27] for 64 s snapshots. Spikes indicate coordination
between workers and the driver.

in the transient critical paths of computation, and which
can be used to generate new time-varying performance
summaries. The CP metric can be computed online and
aggregates information from all paths in a snapshot with-
out the need to materialize any path.

Our next contribution (in Section 4) is a model for
the execution of distributed dataflow programs suffi-
ciently general to capture the execution (and logging) of
commonly-used systems—Spark, Flink, TensorFlow, and
Timely Dataflow—and detailed enough for us to define
Transient Critical Paths and CP over each of these.

We then show (in Section 5) an algorithm to compute
CP online, in real time, and describe SnailTrail, a
system built (itself as a Timely Dataflow program) to
do this on traces from the four dataflow systems listed
above. In Section 7 we evaluate SnailTrail’s perfor-
mance, demonstrate online critical path analysis using
all four reference systems with a variety of applications
and workloads, and show how CP is more informative
than existing methods, such as conventional profiling and
single-path critical path analysis (Sections 7.4 and 7.5).

Figure 1 gives a flavor of how CP compares with con-
ventional profiling techniques. The key difference is that
our approach highlights activities that contribute signifi-
cantly to the performance of the system, while discarding
processing time that lies outside the critical path.

We believe SnailTrail is the first system for online
real-time critical path analysis of long-running and stream-
ing computations.

2 Critical Path Analysis background

CPA has been successfully applied to high-performance
parallel applications like MPI programs [11, 32], and the
basic concepts also apply to the distributed dataflow sys-
tems we target in this paper. In this section we review

classical CPA applied to batch computations as a prelude
to our extension of CPA to online and continuous com-
putations in the next section. Table 1 summarizes the
notation we use in this section and the rest of this paper.

We view distributed computation as executed by indi-
vidual system workers that perform activities (e.g. data
transformations or communication). The critical path
is defined as the sequence of activities with the longest
duration throughout the execution. More formally:

Definition 1 Activity: a logical operation performed at
any level of the software stack, and associated with two
timestamps [start,end], start ≤ end, that denote the
start and end of its execution with respect to a clock C.

An activity can be either an operation performed by a
worker (worker activity) or a message transfer between
two workers (communication activity). Typically, worker
activities correspond to the execution of some code, but
can also be I/O operations performed by the worker (e.g.
reads/writes to/from disk). Communication activities cor-
respond to worker interactions, e.g. message passing.

Different systems have different concepts (threads,
VMs, etc.) corresponding to workers. For consistency,
we define workers as follows:

Definition 2 Worker: a logical execution unit that per-
forms an ordered sequence of activities with respect to a
clock C.

We require that no two activities of the same worker
ai:[starti,endi] and a j:[start j,end j] (where i ,
j) can overlap in time, i.e. either endi ≤ start j or
starti ≥ end j.

Central to CPA is the Program Activity Graph (PAG):

Definition 3 Program Activity Graph: A PAG G = (V,E)
is a directed labeled acyclic graph where:

• V is the set of vertices. A vertex v ∈ V represents an
event corresponding to the start or end of an activity.
Each vertex v has a timestamp v[t] and a worker id
v[w].

• E ≡ Ew ∪ Ec ⊂ V ×V, Ew ∩ Ec = ∅, is the set of di-
rected edges. An edge e = (vi,v j) ∈ E represents an
activity a:[start,end], where vi[t] = start and
v j[t] = end. An edge e has a type e[p] and a weight
e[w] indicating the activity duration in time units,
so that e[w] = v j[t] - vi[t] = end - start ≥ 0. An
edge e ∈ Ew denotes a worker activity whereas an
edge e ∈ Ec denotes a communication activity.

The direction of an edge e = (v1,v2) ∈ E from node
v1 ∈ V to node v2 ∈ V denotes a happened-before rela-
tionship between the nodes [24]. The critical path is then
defined as the longest path in the program activity graph:

Symbol Description

a:[start,end] Activity a with start and end
timestamps

G Activity graph
G[ts,te] Snapshot of activity graph G in the

time interval [ts,te]∏te
ts

(e) Projection of edge e on the time
interval [ts,te]

v[w] Worker id of vertex v
v[t] Timestamp t of vertex v
e[w] Weight w of edge e
e[p] Type p of edge e
||~p|| Total weight of edges in path ~p
Ew Set of worker activities
Ec Set of communication activities

c(e) transient path centrality of edge e
CPe critical participation of edge e

Table 1: Notation used throughout this paper

Definition 4 Critical Path: Given a program activity
graph G = (V,E), the critical path is a path ~p ∈ G such
that @~p′ ∈ G : ||~p′|| > ||~p||, where ||~p|| =

∑
∀e ∈ ~p e[w] and

||~p′|| =
∑
∀e ∈ ~p′ e[w] is the sum of all edge weights in ~p

and ~p′ respectively.

3 Online Critical Path Analysis

Offline processing in traditional CPA is not feasible for
long-running or continuous computations like streaming
applications or machine learning model training. In these
cases, neither the program activity graph nor the critical
path can be defined as in Section 2.

Instead, we define online CPA on PAG snapshots, per-
forming it on user-defined time windows: slices of the
PAG that contain activities within a specified time interval.
This enables not only performance analysis of running
applications, but also targeting specific parts of the com-
putation like the model training phase in a TensorFlow
program or a specific time window in a Flink stream.

To achieve this, we show here how to define a time-
based program activity graph snapshot and a transient
critical path on this graph. We then define the critical
participation performance metric, and we provide the
intuition behind it in Section 3.3.

3.1 Transient Critical Paths
To retrieve a snapshot of the PAG, we first assign activities
to time windows. Given an edge in a graph, we call its
corresponding edge in a snapshot an edge projection:

Definition 5 Edge Projection: Let e = (vi,v j) be an edge
of an activity graph G = (V,E), where e ∈ E and vi,v j ∈ V.
Let also [ts, te], ts ≤ te, be a time interval with respect to
a clock C. Let us be a copy of vi with us[t] = ts and ue a
copy of v j with ue[t] = te. The projection of e on [ts, te] is
an edge of the same type as e and is defined only whenever[
vi[t],v j[t]

]
overlaps with [ts, te] as follows:

te∏
ts

(e) =

(
argmax

[t]
(vi,us),argmin

[t]
(v j,ue)

)
Activities entirely within the time interval [ts, te] are

unchanged by the projection, whereas activities that strad-
dle the boundaries are truncated to fit the interval. We can
now define a snapshot as follows:

Definition 6 PAG Snapshot: Let G = (V,E) be a program
activity graph, and [ts, te], ts ≤ te, be a time interval with
respect to a clock C. The snapshot of G in [ts, te] is a
directed labeled acyclic graph G[ts,te] = (V′,E′) that is
constructed by projecting all edges of G on [ts, te].

The snapshot G[ts,te] is that part of the PAG which can
be observed in the time window [ts, te]. Figure 2a shows
this applied to the activity timelines of two worker threads,
w1 and w2, with time flowing left to right. The complete
PAG is shown at the top with the critical path in red.
Below is the projection of the PAG into the interval [ts, te].
The activities straddling the window (e.g.

∏te
ts

(b,g) =

(b′,g′)) are projected to fit in the snapshot.
The key observation is that we cannot define a single

critical path in a PAG snapshot since there exist multiple
longest paths with the same total weight: te− ts. All paths
starting at ts and ending at te are potentially parts of the
evolving global critical path. For this reason, we define
the notion of transient critical path:

Definition 7 Transient Critical Path: Let G[ts,te] = (V,E)
be the snapshot of an activity graph G in the time
interval [ts, te]. We define the set of paths P on G[ts,te] as
P ≡ {~p ⊆ E | @ ~p′ : ||~p′|| > ||~p||}, where ~p denotes a
path in G[ts,te], and ||~p|| denotes the total weight of all
edges in ~p, i.e., ||~p|| =

∑
∀e ∈ ~p e[w].

Any path ~p ∈P is a transient critical path of the activity
graph G in the time interval [ts, te].

Figure 2b shows all six transient critical paths for the
snapshot in Figure 2a. Since each could potentially par-
ticipate in the evolving global critical path, we need a
metric that can aggregate information from all paths and
rank activities according to their impact on computation
performance. In offline CPA such a ranking is trivial since
there is only one critical path for the entire computation.

ts te

w1

w2

w1

w2

a b c d e

f g h i

b’ c’ d’ e’

f’ g’ h’ i’

t=k t=k+1

(a) Program activity timelines of a distributed execution with
two workers. The vertical lines divide the timeline into intervals
of one time unit. The critical path is highlighted in red in the
top timeline. The bottom timeline shows the PAG snapshot into
the time interval [ts, te].
b’ c’ d’ e’

g’ h’

b’ c’ d’

g’ h’ i’

c’ d’ e’

g’ h’f’

c’ d’

g’ h’f’ i’

b’

g’ h’ i’g’ h’f’ i’

(b) Transient critical paths for the graph snapshot of Figure 2a.

Figure 2: A program activity graph, its snapshot in the
interval [ts, te], and its transient critical paths.

Since all transient paths can potentially be part of the
evolving global critical path, an activity that appears on
many transient paths is more likely to be critical and
should be ranked high. In Figure 2b, edge (d′, i′) appears
in two paths, while edge (g′,h′) belongs to all six. The
performance metric we define next incorporates this in-
formation and ranks activities based on their potential
contribution to the global critical path.

3.2 Critical Participation (CP metric)

Given the duration of an activity e[w] and the total length
||~p|| of the critical path ~p, the participation of e to ~p is
defined as:

qe =
e[w]
||~p||
∈ [0,1] (1)

and is easily computed for all activities in a single ~p pass.
We correspondingly define average critical participa-

tion (CP) of an activity e in a transient critical path as:

CPe =

∑i=N
i=1 qi

e

N
∈ [0,1] (2)

where qi
e is the participation of e to the i-th transient

critical path (given by Eq. 1), and N is the total number
of transient critical paths in the graph snapshot.

A straightforward way to compute CPe is to material-
ize all N transient paths and compute the participation
of each activity in every path. However, path material-
ization is not viable in an online setting because a single
graph snapshot might contain too many paths to maintain.
Instead, we exploit the fact that the CP of an activity ac-
tually depends on the total number of transient paths this
activity belongs to. Hence, we define the transient path
centrality as follows:

Definition 8 Transient Path Centrality: Let P =

{~p1, ~p2, ..., ~pN} be the set of N transient paths of snap-
shot G[ts,te] with length ||~p|| = te − ts. The transient path
centrality of an edge e ∈G[ts,te] is defined as

c(e) =

N∑
i=1

ci(e), where ci(e) =

0 : e < ~pi

1 : e ∈ ~pi

The following holds:

CPe =

∑i=N
i=1 qi

e

N
=

c(e)
N
·

e[w]
||~p||

(3)

Eq. 31 indicates that the computation of CPe can be
reduced to the computation of c(e), which requires no
path materialization and can be performed in parallel for
all edges in G[ts,te]. Section 5 provides an algorithm for
transient path centrality and CP without materialization.
Note that we can normalize by the number of paths N and
their length ||~p|| because of Definition 7 guaranteeing that
all paths have the same length.

We can now compute the transient path centrality and
critical participation for the example in Figure 2. For
instance, c(d′, i′) = 2 and c(g′,h′) = 6. Respectively, since
te− ts = 5 and N = 6, CP(d′,i′) = 0.066 and CP(g′,h′) = 0.2.

The CP of Eq. 2 can be generalized for activities of a
specific type c as: ∑

∀e:e[p]=c

CPe (4)

and the following holds1:∑
∀c ∈ G

∑
∀e:e[p]=c

CPe = 1 (5)

Intuitively, Eq. 5 states that the estimated contribution
of an activity type, e.g., serialization, to the critical path
of the computation is normalized over the contribution of
all other activity types in the same snapshot.

1We provide proofs of Eqs. 3 and 5 in the Appendix A.3.

3.3 Comparison with existing methods

Figure 3 illustrates by example a comparison of CP-based
performance analysis with two existing methods: conven-
tional profiling and traditional critical path analysis.

Conventional profiling summaries aggregate activity
durations by type or by worker timeline. Such summaries
provide information on how much time (i) a program
spends on a certain activity type (e.g. serialization) or (ii)
a worker spends executing an activity type as compared
to other workers. Since conventional profiling summaries
rely solely on durations and do not capture execution
dependencies, they cannot reveal bottlenecks and execu-
tion barriers. Conventional profiling in the execution of
Figure 3 would rank activities (a,b) and (c,d) high since
they both have a duration of 3 time units, larger than all
other activities. However, optimizing those activities can-
not result into any performance benefit for the parallel
computation as they are both followed by a waiting state
(denoted with a dashed line).

On the other hand, CPA captures execution dependen-
cies and can accurately pinpoint activities which influence
performance. However, traditional CPA is not directly ap-
plicable in a continuous computation as the critical path is
not known by just inspecting a snapshot of the execution
traces. In a snapshot like the one of Figure 3, all paths
starting at si and finishing at ei have equal length in time
units, thus traditional CPA would choose one of them at
random. We have highlighted such a path in Figure 3 in
red color. Although this randomly selected path does not
contain the activities (a,b) and (c,d), whose optimization
would certainly not improve the latency of the computa-
tion, it misses several important activities, such as (x,u)
and (v,z), whose optimization would do so.

The CP metric overcomes the limitations of both con-
ventional profiling and traditional CPA by ranking activi-
ties based on their potential contribution to the evolving
critical path of the computation, which in turn reflects
potential benefits from optimization.

Given a snapshot and no knowledge of the execution
timelines outside of it, any path between the si and ei
points in Figure 3 is equally probable to be part of the
critical path. CP is a fairer metric compared to existing
methods in that it aggregates an activity’s contribution
over all transient critical paths and normalizes by the
number of paths and the activity’s duration. The more
paths an activity contributes to, the higher the probability
it is a part of the evolving critical path and, hence, the
higher its CP metric is. In Figure 3, activities (a,b) and
(c,d) do not contribute to any path and thus have zero
transient path centrality and CP values. On the other
hand, activities (x,u), (u,v), and (v,z) will be ranked as
top-three by CP, since they participate in six, nine, and
six transient critical paths respectively.

ts te

w1

w2

w3

96

0

0

6

t=k t=k+1

u v

a b

dc

x z

s1

s2

s3

e1

e2

e3

Figure 3: A program activity graph snapshot with three
workers. The vertical lines divide the timeline into inter-
vals of one time unit. A randomly chosen critical path
is highlighted in red. Edge annotations correspond to
transient path centrality (Definition 8).

In Section 7.4 we empirically compare CP-based per-
formance summaries to conventional profiling and tradi-
tional CPA, and demonstrate how the results of the latter
can be misleading. Further, in Section 7.5, we show how
CP can detect and help optimize execution bottlenecks
like the one represented by activity (u,v) in Figure 3.

4 Applicability to dataflow systems

Here we show the applicability of our applicability to a
range of modern dataflow systems. We provide details on
the model assumptions and the instrumentation require-
ments in the Appendix.

Spark, Flink, TensorFlow, and Timely are superficially
different, but actually similar with regard to CPA: all
execute dataflow programs expressed as directed graphs
whose vertices are operators (e.g. map, reduce) and whose
edges denote data dependencies. During runtime, a logi-
cal dataflow graph is executed by one or more workers,
which can be threads or processes in a machine or a clus-
ter. Each worker has a copy of the graph and processes a
partition of the input data in parallel with other workers.

4.1 Activity types
We define a small set of activity types we use to classify
both the activity of a worker at any given point in time,
and communication of data between workers/operators.
We consider the following types of worker activities:

Data Processing: The worker is computing on data in an
operator, which usually has a unique ID. We also include
low-level (de)compression operations.

Scheduling: Deciding which operator a worker will exe-
cute. In Spark and Flink, scheduling is done by special
workers (the Driver and the JobManager).

Barrier Processing: The worker is processing informa-
tion which coordinates the computation (e.g distributed
progress tracking in Timely or watermarks in Flink).

Buffer Management: The worker is managing buffers
between operators (e.g. Flink’s FIFO queues) or buffering
data moving to/from disk (e.g. Spark). The activity may
include copying data into/out of buffers, locking, recy-
cling buffers (e.g. Flink) and dynamically allocating them
(e.g. Timely).

Serialization: Data is being (un)marshaled, an operation
common to all dataflow systems when messages are sent
between processes and/or machines.

Waiting: The worker is waiting on some message (data
or control) from another worker, and is therefore either
spinning (as in Timely) or blocked on an RPC (as in Ten-
sorFlow). Waiting in our model is always a consequence
of other, concurrent, activities [21], and so is a key ele-
ment of critical path analysis: a worker does not produce
anything useful while waiting, and so waiting activities
can never be on the critical path.

I/O: The worker is waiting on an external (uninstru-
mented) system, (e.g. Spark waiting for HDFS, or Flink
spilling large state to disk). I/O activities have no spe-
cial meaning, but capture cases where performance of the
reference system is limited by an external system.

Unknown: Anything else: gaps in trace records and any
worker activity not captured by the instrumentation. A
large number of unknown activities usually indicates in-
adequate instrumentation [21].

In contrast, interaction between workers is modeled as
a communication activity, which captures either: (i) appli-
cation data exchange over a communication channel, or
(ii) control messages conveying metadata about worker
state or progress and exchanged between pairs of workers
(as in Timely) or through a master (as in Spark, Flink).

4.2 Instrumenting specific systems

We applied our approach to Spark, TensorFlow, Flink,
and Timely Dataflow, mapping each to our taxonomy of
activities. In some cases we used existing instrumentation,
whereas in others we added our own. Space precludes a
full discussion of either the structure of these systems or
their instrumentation; we provide only brief summaries
here and we give more details in [21].

Timely Dataflow [26] required us to add explicit in-
strumentation, and was the first system we addressed (in
part because SnailTrail is written in Timely). Timely’s
progress tracking corresponds to our “barrier” activity, dis-
crete (de)serialization is performed on both data records
and control messages, and Timely’s cooperative schedul-
ing means that any otherwise unclassified worker activity
corresponds to “scheduling”.

Apache Flink [10] adopts (unlike Timely) a master-
slave architecture for coordination. We treat Flink’s

Figure 4: SnailTrail overview.

JobManager, TaskManagers, and Tasks all as work-
ers, and Flink’s runtime has clear activities correspond-
ing to buffer management and serialization. Schedul-
ing is performed in the JobManager, barrier process-
ing corresponds to the watermark mechanism, and con-
trol messages correspond to communication between the
JobManager and TaskManagers.

TensorFlow [4] has its own instrumentation based on
“Timeline” objects, which we reuse unchanged. While
enough to generate meaningful results, it also shows how
even a well-considered logging system can easily omit
information vital for sophisticated performance analysis.

Spark [38] also has native instrumentation which we
use to model both the Spark driver and executors as
workers. The logs provide information on the lineage
of Resilient Distributed Datasets (RDDs) facilitating con-
struction of the PAG. Since executor scheduling is not
instrumented, we assume greedily that a task is started on
the most recently used thread, which aligns with Spark’s
observed behavior.

5 SnailTrail system implementation

CP is implemented in SnailTrail, itself a data-parallel
streaming application written in Rust using Timely
Dataflow (Figure 4). It reads streams of activity traces via
sockets, files, or message queues from a reference appli-
cation and outputs a stream of performance summaries.
SnailTrail operates in four pipeline stages: it (i) in-
gests logs, (ii) slices the stream(s) into windows [ts, te]
and constructs PAG snapshots, (iii) computes the CP of
the snapshots, and (iv) outputs the summaries we show in
Section 6.

Traces are sent to SnailTrail which ingests a stream
S of performance events corresponding to vertices in the
activity graph. The snapshots are constructed using Algo-
rithm 1. First, SnailTrail extracts from S the events in

the time window [ts, te] (line 1). These are then grouped
by the worker that recorded them (line 2). Each group
corresponds to a worker timeline in Figure 2a. Then,
SnailTrail sorts the events in each timeline by time
(line 4), and scans each timeline in turn to create the set
of edges Ew (line 6) that correspond to worker activities
(cf. Section 4.1). Meanwhile, communication activities
are partially initialized based on send and receive at
each worker (line 7). Then (line 8), partial edges are
grouped by the attributes

(
wsrc

id ,w
dst
id ,cid

)
; note that wsrc

id is
the sender worker id, wdst

id is receiver id, and cid is gener-
ated to uniquely identify a message. These pairs of partial
edges are concatenated to create the final communication
edges in Ec, and the output is the union of sets Ew and Ec
(line 9).

Algorithm 1: Graph Snapshot Construction

Input :A stream S of logs and a window [ts, te];
Output :The graph snapshot G[ts,te];

1 let S [ts,te] be the logged events from S in [ts, te];
2 group events in S [ts,te] by worker;
3 for each worker timeline in S [ts,te] do
4 sort events by time;
5 scan events and generate:
6 (a) the set Ew of edges for worker activities;
7 (b) a set Eh of half edges for send and receive

events;

8 group half edges in Eh by
(
wsrc

id ,wdst
id ,cid

)
and create the set

Ec of edges for communication activities;
9 return Ew∪Ec

Algorithm 1 requires two shuffles of the incoming log
stream: one on worker id (before line 2), and a second
on the triple

(
wsrc

id ,w
dst
id ,cid

)
(before line 8). The most

expensive step is sorting the timeline (line 4), requiring
O

(
|T | · log |T |

)
time, where |T | is the number of events

in the timeline. Parallelism is limited by the number of
workers in the reference system (usually many more than
SnailTrail) and the density of the graph. We emphasize
that edges in the PAG represent real happened-before
dependencies given by the instrumentation. More details
in the way edges are created in lines 6-7 are given in the
Appendix along with a discussion on clock alignment.

For each graph snapshot, the CP metric is computed
using Algorithm 2. SnailTrail collects ‘start’ and ‘end’
nodes (lines 1-2) as seeds to traverse G[ts,te]. Vs (resp. Ve)
includes the node(s) with the minimum (resp. maximum)
timestamp v[t] in G[ts,te]. Typically, |Vs| = |Ve| = `, where
` is the number of timelines, and so all nodes in Vs have
timestamp ts whereas all nodes in Ve have timestamp te.

Algorithm 2 computes the transient path centrality c(e)
of Eq. 3 for all edges in G[ts,te]. Observe that c(e) = c1 ·c2,
where c1 is the number of paths from the source of e

to any node in Vs, and c2 is the number of paths from
the destination of e to any node in Ve. The algorithm
thus performs two simple traversals of G[ts,te] in parallel,
computing c1 and c2 for each edge (lines 3-4). Each
traversal outputs pairs (e,ci) and these are finally grouped
by e to give CP values (lines 6-7).

Note that, while traversing G[ts,te], we visit each edge
in G[ts,te] only once by propagating the final value c1 (resp.
c2) from each edge to all its adjacent edges. This reduces
the intermediate results of the computation significantly.
We compute the CP according to Equation 3, which does
not require path materialization.

Algorithm 2 requires two partitions of G[ts,te]: one on
source, and one on destination ids. Worst-case time com-
plexity is O(d), where d is the diameter of G[ts,te] in num-
ber of edges, i.e., the maximum number of edges in any
transient critical path.

Algorithm 2: Critical Participation (CP Metric)

Input :An activity graph snapshot G[ts,te] = (V,E);
Output :A set S = {(e,CP) | e ∈G[ts,te]} of CP values;

1 let Vs ≡ {v ∈ V | @v′ ∈ V : v′[t] < v[t]}; //start nodes
2 let Ve ≡ {v ∈ V | @v′ ∈ V : v′[t] > v[t]}; //end nodes
//Both traversals are performed in parallel

3 traverse G[ts,te] starting from Vs, and count the total number
of times each edge is visited, let c1;

4 traverse G[ts,te] backwards, starting from Ve, and count the
total number of times each edge is visited, let c2;

5 S = ∅;
6 for each edge e ∈ E do
7 S = S ∪{(e, c1 · c2 · e[w]

N · (te−ts))}

8 return S

Performance summaries are constructed by user-
defined groupings on the edge attributes and summing CP
values over each group.
SnailTrail’s accuracy depends on the quality of the

instrumentation. A more complete set of dependencies
increases the accuracy of the CP metric. We leave a
worst-case error bound analysis for future work.

6 CP-based performance summaries

The CP metric provides an indication of an activity’s con-
tribution to the evolving critical path. SnailTrail can
be configured to generate different types of performance
summaries using the CP metric. Each summary type tar-
gets a specific aspect of an application’s performance and
is designed to reveal a certain type of bottleneck. In partic-
ular, SnailTrail provides four performance summaries
which can answer four types of questions: (i) Which activ-
ity type is on the critical path? (ii) Is there data skew? (iii)
Is there computation skew? (iv) Is there communication

0 5 10 15
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0
C

P

DataMessage
Unknown
Buffer

Deserialization
Serialization
Processing

(a) Activity

0 5 10 15
Snapshot

0.00

0.05

0.10

0.15

C
P

(b) Straggler

0 5 10 15
Snapshot

0.00

0.02

0.04

0.06

C
P

Flatmap Count

(c) Operator

0 1 2 3 4 5 6 7 8 9 10 11 12
Worker

0
1
2
3
4
5
6
7
8
9

10
11
12

W
or

ke
r

(d) Communication

Figure 5: Examples of SnailTrail summary types for the Dhalion [18] benchmark on Flink with 1s snapshots.

skew? The performance summaries not only indicate po-
tential bottlenecks, but also provide immediate actionable
feedback on which activities to optimize, which workers
are overloaded, which dataflow operator to re-scale, and
how to minimize network communication.

Figure 5 shows examples of the four summary types for
the Dhalion [18] benchmark on Flink with 1s snapshots.
In the rest of this section, we describe each summary
type in detail and we discuss how to use them in practical
scenarios to improve an application’s performance.

Activity summary. Is the fault-tolerance mechanism in
the critical path when taking frequent checkpoints? Is
coordination among parallel workers an overhead when
increasing the application’s parallelism? An activity sum-
mary can answer this sort of questions about an applica-
tion’s performance. This summary plots the proportional
CP value of selected activity types with respect to the
other activity types in a given snapshot. Activity reveal
bottlenecks inherent to the system or its configuration.
Having a ranking of activity types based on their critical
participation essentially gives us an indication on which
activities have the higher potential for optimization ben-
efit. For example, if we find that serialization is on the
critical path, we might want to try a different serializa-
tion library. The activity summary ranking can also help
us choose good configurations for our application, like
how to adjust the checkpoint interval or the parallelism.
The activity summary of Figure 5 shows that serialization
and processing have the higher potential for optimization.
Activity summaries can be configured to plot selected
activities only, as in Figure 1 where we only show the
Spark driver’s scheduling.

Straggler summary. Is there data skew? If so, which
worker is the straggler? SnailTrail can answer these
questions with a straggler summary, which plots the criti-
cal participation of a worker’s timeline in a certain snap-
shot. The straggler summary relies on the observation that
if a worker is a straggler then many transient critical paths
pass through its timeline. Hence, we can compare how

how critical a worker’s activities are as compared to the
other workers in the computation and reveal computation
imbalance. This ranking can serve as input to a work-
stealing algorithm or guide a data re-distribution tech-
nique. The straggler summary of Figure 5 clearly shows
one straggler worker in the Flink job. In Section 7.5, we
look closer into detecting skew with SnailTrail.

Operator summary. Will re-scaling my dataflow im-
prove performance? And if yes, which operator in the
dataflow to re-scale? An operator summary plots the crit-
ical participation of each operator’s processing activity in
a snapshot, normalized by the number of parallel workers
executing the operator. This summary reveals bottlenecks
in the dataflow caused by resource underprovising and
serves as a good indicator for scaling decisions. Tradi-
tional profiling methods fail to detect that an operator
might be limiting the end-to-end throughput of a dataflow
even if its parallel tasks are perfectly balanced. Such
bottlenecks are hard to detect by looking at traditional
metrics such as queue sizes, throughput, and backpres-
sure. The operator summary of Figure 5 shows that both
operators have similar critical participation, thus the par-
allelism of the job is properly configured. In Section 7.5,
we present a detailed use-case where operator summaries
guide scaling decisions for streaming applications.

Communication summary. Is there communication
skew? And if yes, which communication channels to opti-
mize? A communication summary plots the critical partic-
ipation of communication activities between each pair of
workers within a given snapshot. Contrary to traditional
communication summaries, this CP-based summary does
not rely on communication frequency or absolute mes-
sage sizes. Instead, it ranks communication edges by
their critical importance: the more often a communication
edge belongs to a transient critical path, the higher it will
be ranked by the summary. Communication summaries
can be used to minimize network delays and optimize
distributed task placement. If we find that a pair of work-
ers’ communication is commonly on the critical path, it

is probably a good idea to physically deploy these two
workers on the same machine. For example, the commu-
nication summary of Figure 5 indicates that colocating
worker 5 with workers 11-13 could benefit performance.

7 Evaluation

To show generality, we evaluate SnailTrail analyzing
four different reference systems: Timely Dataflow (ver-
sion 0.1.15), Apache Flink (1.2.0), Apache Spark (2.1.0),
and TensorFlow (1.0.1). Our evaluation is divided into
four categories. First, in Section 7.2 we show the instru-
mentation SnailTrail needs does not cause significant
impact on the performance of reference systems. Second,
in Section 7.3 we investigate SnailTrail’s performance
and show it can deliver results in real time with high
throughput and low latency. Third, we compare the qual-
ity of SnailTrail’s analysis and the utility of the CP
metric with both conventional profiling and traditional
critical path analysis (Section 7.4). Finally, we present use
cases for SnailTrail with analysis results (Section 7.5).

7.1 Experimental setting
SnailTrail uses the latest Rust version of Timely
Dataflow [25] compiled with Rust 1.17.0. In all experi-
ments, SnailTrail ran on an Intel Xeon E5-4640 2.40
GHz machine with 32 cores (64 threads) and 512G RAM
running Debian 7.8 (“wheezy”), and was configured to
produce results by ingesting execution traces from a ref-
erence system on a different cluster.

Benchmarks. We compare SnailTrail to existing
approaches with several traces generated by Flink,
Spark, and TensorFlow using the following bench-
marks. For Flink, we use the Yahoo Streaming Bench-
mark (YSB) [12] and the WordCount benchmark of
Dhalion [18]. For Spark, we use YSB and, for Tensor-
Flow, we use the AlexNet [23] program on ImageNet [29].
To evaluate SnailTrail performance we use Flink (con-
figured with 48 parallel tasks) running a real-world ses-
sionization program on a 10min window of operational
logs from a large industrial datacenter. This generates
a trace with a median number of 30K events per sec-
ond (around 7.5M events for a 256s snapshot, the largest
we used). We also show the instrumentation overhead
in Flink, with the same sessionization experiment, and
Timely, using a PageRank computation with 16 parallel
workers on a random graph.

7.2 Instrumentation Overhead
SnailTrail relies on tracing functionality in the refer-
ence system, and this incurs performance overhead. To

Base-
line

INFO
log

Instru-
mented

0

1

2

3

4

5

P
ro

ce
ss

in
g

la
te

nc
y

[s
]

Base-
line

Instru-
mented

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Figure 6: Latency with and without instrumentation for
Flink (left) and Timely (right)

evaluate the overhead of the instrumentation we added,
we implemented a streaming analytic job, sessionization,
in Flink and an iterative graph computation, PageRank, in
Timely, and measured performance with tracing enabled
and disabled. For TensorFlow and Spark we use their
existing, and somewhat incomplete, tracing facilities.

Figure 6 shows box-and-whisker plots of processing
latency for Flink and Timely implementations. Individual
bars correspond to the cases where logging is completely
turned off (baseline), the default logging level (info), and
our detailed tracing (instrumented).

Flink shows a statistically significant difference of
9.7 % (±1.43%) additional mean latency, or 203ms
(±29.9µs) in absolute terms, at 95% confidence. This
overhead is negligible, given that Flink typically runs
with logging enabled in production deployments.

For Timely, there is a statistically significant difference
of 13.9 % (±5.5%) increase in the mean latency, or 319µs
(±126.2µs) in absolute terms, at 95% confidence.

Experiments with Spark and TensorFlow showed no
discernible overhead for collecting the traces required by
SnailTrail. Overall, we argue that performance penal-
ties around 10% are an acceptable tradeoff for greater in-
sight, and could be additionally amortized in some cases.

7.3 SnailTrail Performance
We evaluate SnailTrail’s performance to demonstrate
that (i) it always operates online and thus provides feed-
back to the running reference applications in real-time and
(ii) its analysis scales to large deployments of reference
applications without violating this online requirement.

Latency. We require SnailTrail to be capable of con-
structing the PAG and computing the CP metric for a
snapshot of size x secs in less than x secs. The number of
events in a snapshot depends on (i) the snapshot duration
and (ii) the instrumentation granularity of the reference
system. For this experiment, we vary the number of events

snapshot
1 2 4 8 16 32 64 128 256

size
latency 0.06 0.14 0.29 0.62 1.40 2.93 5.91 13.16 24.84
#events 0.03 0.06 0.12 0.24 0.48 0.94 1.91 3.76 7.5

Table 2: SnailTrail’s median latency per snapshot (s)
for the online analysis of different snapshot intervals (s).
The last row shows the median number of events (mil-
lions) per snapshot.

snapshot
1 2 4 8 16 32 64 128 256

size
throughput 1.2 1.2 1.2 1.1 1.1 1.0 0.8 0.5 0.4

latency 0.7 1.4 3.2 7.1 10.1 10.2 16.8 24.9 30.8

Table 3: SnailTrail’s maximum achieved throughput
(millions of processed events per second) and correspond-
ing latency per snapshot (s) for the online analysis of
different snapshot intervals (s).

in the snapshot by increasing its duration from 1s to 256s
(in powers of 2) and we run SnailTrail on the Flink
sessionization job trace, which is the densest one we have.
Note that the public Spark traces from real-world cloud
deployments [27] are not as dense as the ones generated
by the Flink streaming computations we run.

We show median latency and number of events per
snapshot in Table 2; SnailTrail is always capable of
operating online and its latency increases almost linearly
with the snapshot duration. Specifically, it can process 1s
of input logs in 6ms and 256s of input logs in under 25s.

Throughput. To evaluate SnailTrail’s throughput, we
interleave the processing of multiple snapshots to increase
the number of events sent to the system. Table 3 shows
the maximum achieved throughput (number of processed
events per second) while respecting the online require-
ment and the corresponding latency for processing an
input snapshot, including PAG construction and CP com-
putation. For 1s snapshots, SnailTrail can process 1.2
million events per second; a throughput two orders of
magnitude larger than the event rate we observed in all
log files we have, including the Spark traces from [27].
SnailTrail comfortably keeps up with all tested work-
loads: the time to process a snapshot is always smaller
than the snapshot’s duration. Throughput decreases when
increasing the snapshot size since the PAG gets bigger.

7.4 Comparison with existing methods
We examine how useful the CP-based summaries pro-
duced by SnailTrail are in practice, as compared to
the weight-based summaries produced by conventional
profiling, where activities are simply ranked by their total

0 100 200
Snapshot

0.0

0.2

0.4

0.6

0.8

1.0

C
P

0 100 200
Snapshot

Si
ng

le
pa

th
C

P

ControlMessage
Scheduling
DataMessage
BarrierProcessing

Input
Deserialization
Unknown

Buffer
Processing
Serialization

Figure 7: CP-based (left) and single-path (right) sum-
maries for Flink on YSB (1s snapshots).

0 5 10 15
Snapshot

0.0

0.2

0.4

0.6

0.8

C
P

0 5 10 15
Snapshot

%
w

ei
gh

t

Processing Scheduling

Figure 8: CP-based (left) and conventional profiling
(right) summaries for Spark on YSB [12] (8s snapshots).

duration, and the single-path summaries, where CP is
computed on a single transient critical path (in this exper-
iment selected at random). We show examples of such
summaries in Figures, 7, 8, and 9 for Flink, Spark, and
TensorFlow, along with the configuration of each system.

First note that single-path summaries correspond to a
straight-forward application of traditional CPA on trace
snapshots where only a single path is chosen at random.
The plot on the right of Figure 7 exhibits high variation
because different transient critical paths may consist of
completely different activities, even within the same graph
snapshot. In contrast, CP is a fairer metric that avoids this
misleading critical activity “switching” by aggregating
information from all transient critical paths in a snapshot.

Conventional profiling summaries are different from
CP-based summaries in that they do not account for over-
lapping activities, thus, they overestimate the participation
of activities in the critical path (e.g., the processing ac-
tivity in the right plot of Figure 8), resulting in activity
durations that may even exceed the total duration of the
snapshot. The CP-based summary of Figure 8 overcomes
this problem and highlights the overhead of global co-
ordination in micro-batch systems (driver’s scheduling
activity), a known result also pointed out in Drizzle [34].
SnailTrail is also different to traditional profiling in

its ability to focus on different parts of a long-running

Processing Communication
0.0

0.2

0.4

0.6

0.8

1.0
C

P

Processing Communication

%
w

ei
gh

t
Conv2D
LRN
Unknown

Mul
SquaredDifference
MatMul

Accumulated
DataMessage

Figure 9: CP-based (left) and conventional profiling
(right) summaries for the accuracy phase of AlexNet on
TensorFlow (16 threads).

computation. This feature is particularly useful in ma-
chine learning, where program phases have diverse per-
formance characteristics. As an example, Figure 9 shows
CP-based and conventional summaries for the accuracy
phase of the AlexNet image processing application on
TensorFlow with 16 workers. We plot processing and
communication as separate bars for convenience and we
further break down processing into the different operators
appearing in this computation phase. The conventional
summary overestimates the participation of communica-
tion and underestimates the importance of the Conv2D
operator, which is the most critical one according to the
CP-based summary. Processing in the conventional sum-
mary is dominated by the unknown activity type due to
limited instrumentation in TensorFlow (see [21]).

7.5 SnailTrail in practice

We select Apache Flink as the representative streaming
system and demonstrate SnailTrail in action. We de-
scribe two use-cases and give examples of how the CP-
based summaries can be used to understand and improve
application performance of long-running computations.

Detecting skew. To demonstrate straggler summaries in
action, we use the benchmark of [18]. The benchmark
contains a WordCount application and a data generator.
The data generator can be configured with a skewness
percentage. We experiment with 30%, 50%, and 80%
skewness. We configure the parallelism to be equal to
4 for all operators and we generate straggler summaries
and conventional summaries shown in Figure 10. For
small skew percentage, the conventional summaries fail
to detect any imbalance and essentially indicate uniform
load across workers. For higher skew percentages (50-
80%) they indeed reveal a skew problem, yet they are

unable to indicate a single worker as the straggler. Instead,
they attribute the imbalance problem to several workers.
On the other hand, the CP-based straggler summaries
consistently and accurately detect the straggler worker,
even for low skew percentage.

Optimizing operator parallelism. We now demonsrate
how SnailTrail can guide scaling decisions for stream-
ing applications. We use Dhalion’s [18] benchmark again
and initially under-provision the flatmap stage. We con-
figure four parallel workers for the source, two parallel
workers for the flatmap, and four parallel workers for the
count operator. Figure 11 (left) shows the operator and
conventional profiling summaries for this configuration.
We see that the operator summary detects that the flatmap
workers are bottlenecks. On the other hand, the conven-
tional summary shows a negligible difference between
the parallel workers’ processing. In addition, we gather
metrics from Flink’s web interface. Using those, we can
observe backpressure, yet we have no indication of the
cause. We next decrease the source’s input rate, by chang-
ing its parallelism to one worker. Note that slowing down
the source is a common system reaction to backpressure.
Figure 11 (middle) shows the operator and conventional
profiling summaries after this change. Notice how slow-
ing down the source does not solve the problem and how
the operator summary still provides more accurate infor-
mation than the conventional one. The operator summary
essentially indicates that the flatmap operator has a high
CP value and needs to be re-scaled. Figure 11 (right)
shows the summaries after applying a parallelism of four
to all operators. Checking Flink’s web interface again we
see that backpressure disappears.

8 Related Work

There exists abundant literature on performance analysis,
characterization, and debugging of distributed systems,
although we know of no prior work to perform online
critical path analysis for long running computations, or
applicable across a broad range of execution models. We
distinguish three main areas of related work:

Critical Path Analysis: Yang et al. [36] first applied
CPA to distributed and parallel applications, defined the
PAG, gave a distributed algorithm for CPA, and showed its
benefits over traditional profiling. CPA and related tech-
niques have since been used to analyze distributed pro-
grams like MPI applications [32, 8] and web services [13],
in all cases using offline traces. Algorithms to compute
the k longest (near-critical) paths in a computation are
given in [6].

The first online method for computing critical path
profiles seems to be [22], where performance traces are
piggybacked on data messages exchanged by processes at

0 20 40
Snapshot

0.00

0.05

0.10

0.15
CP

0 20 40
Snapshot

\%
 w

ei
gh

t

0 20 40
Snapshot

0.0

0.1

0.2

0.3

CP

0 20 40
Snapshot

\%
 w

ei
gh

t

0 10 20 30
Snapshot

0.00

0.05

0.10

0.15

0.20

CP

0 10 20 30
Snapshot

\%
 w

ei
gh

t

Figure 10: Straggler and conventional profiling summaries for the benchmark of [18] on Flink and different skewness
percentage. The data generator has been configured with 30% (left), 50% (middle), and 80% (right) skeweness.

0 20 40
Snapshot

0.000

0.025

0.050

0.075

0.100

0.125

CP

0 20 40
Snapshot

\%
 w

ei
gh

t

Count Flatmap

0 20 40
Snapshot

0.000

0.025

0.050

0.075

0.100

0.125

CP

0 20 40
Snapshot

\%
 w

ei
gh

t

Count Flatmap

0 20 40
Snapshot

0.00

0.02

0.04

0.06

CP

0 20 40
Snapshot

\%
 w

ei
gh

t

Count Flatmap

Figure 11: Operator and conventional profiling summaries for the benchmark of [18] on Flink and different configu-
rations of operator parallelism. The source, flatmap, and count operators are configured with parallelism 4-2-4 (left),
1-2-4 (middle), and 4-4-4 (right).

runtime. However, the proposed algorithm is too expen-
sive to construct the full PAG and is thus limited to a small
number of user-selected activities. A nice feature of [22]
is combining online CPA with dynamic instrumentation
to selectively enable trace points on demand. [31] extends
the analysis of [22] to the full software stack, and [17]
uses this information for adaptive scheduling. Sonata [20]
pinpoints critical activities in the spirit of CPA. It supports
offline analysis of MapReduce jobs through identifying
correlations between tasks, resources and job phases.

Dataflow Performance Analysis: [28] employs blocked
time analysis to dataflow, a ‘what-if’ approach quanti-
fying performance improvement assuming a resource is
infinitely fast. Blocked time analysis is performed offline
and assums staged batch execution. It can only identify
bottlenecks due to network and disk and does not provide
insights into the interdependence of parallel tasks and op-
erators. An alternative approach in Storm [33]) is based
on the Actor Model [7] rather than CPA. HiTune [16] and
Theia [19] focus on Hadoop profiling; in particular, on
cluster resource utilzation and task progress monitoring.

Distributed Systems Profiling: A comprehensive
overview of prior work in distributed profiling is [39],
which also introduces Stitch, a tool for profiling multi-
level software stacks using traces. Like SnailTrail,
Stitch requires no domain knowledge of the reference
system, but its Flow Reconstruction Principle assumes
logged events are sufficient to reconstruct the execution
flow. SnailTrail in contrast does not assume this, and
indeed yields insights for the better instrumentation of

dataflow systems. VScope [35] targets online anomaly
detection and root-cause analysis in large clusters. Finally,
we note that capturing dependencies between activities
in dataflows is similar to causal profiling in Coz [15].
Coz does not focus on distributed dataflows, but does
work non-intrusively without instrumentation, and may
be applicable to SnailTrail.

9 Conclusion

Online critical path analysis represents a new level of
sophistication for performance analysis of distributed sys-
tems, and SnailTrail shows its applicability to a range
of different engines and applications. Looking forward,
SnailTrail’s online operation suggests uses beyond pro-
viding real-time information to system administrators:
SnailTrail’s performance summaries could serve as im-
mediate feedback for applications to perform automatic
reconfiguration, dynamic scaling, or adaptive scheduling.

The code in SnailTrail has been released as open
source2.

Acknowledgments

We thank Ralf Sager for working on some intitial ideas of this
paper, Frank McSherry and the anonymous NSDI reviewers
for their comments, and Raluca Ada Popa for shepherding the
paper. Vasiliki Kalavri is supported by an ETH Postdoctoral
Fellowship.

2https://github.com/strymon-system/snailtrail

References

[1] BigData benchmark. https://amplab.cs.
berkeley.edu/benchmark/. (accessed: Septem-
ber 2017).

[2] Nagios. https://www.nagios.org. (accessed:
September 2017).

[3] VMware LogInsight. http://www.vmware.com/
products/vrealize-log-insight.html. (ac-
cessed: September 2017).

[4] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M., et al. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Savannah, Georgia,
USA (2016).

[5] Alexander, C., Reese, D., and Harden, J. C. Near-
critical path analysis of program activity graphs. In
International Workshop on Modeling, Analysis, and
Simulation On Computer and Telecommunication
Systems (1994).

[6] Alexander, C. A., Reese, D. S., Harden, J. C., and
Brightwell, R. B. Near-critical path analysis: A
tool for parallel program optimization. In Southern
Symposium on Computing (1998).

[7] Bedini, I., Sakr, S., Theeten, B., Sala, A., and Co-
gan, P. Modeling performance of a parallel stream-
ing engine: Bridging theory and costs. In ICPE
(2013).

[8] Böhme, D., de Supinski, B. R., Geimer, M., Schulz,
M., andWolf, F. Scalable critical-path based per-
formance analysis. In IEEE International Parallel
and Distributed Processing Symposium (2012).

[9] Carasso, D. Exploring Splunk. Evolved Technolo-
gist Press, 2012.

[10] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V.,
Haridi, S., and Tzoumas, K. Apache Flink: Stream
and batch processing in a single engine. Data Engi-
neering 38, 4 (2015).

[11] Chen, J., and Clapp, R. M. Critical-path candidates:
scalable performance modeling for MPI workloads.
In IEEE International Symposium on Performance
Analysis of Systems and Software (2015).

[12] Chintapalli, S., Dagit, D., Evans, B., Farivar, R.,
Graves, T., Holderbaugh, M., Liu, Z., Nusbaum, K.,
Patil, K., Peng, B., and Poulosky, P. Benchmarking

streaming computation engines: Storm, Flink and
Spark Streaming. In 2016 IEEE International Par-
allel and Distributed Processing Symposium Work-
shops, IPDPS Workshops 2016, Chicago, IL, USA,
May 23-27, 2016 (2016), pp. 1789–1792.

[13] Chow, M., Meisner, D., Flinn, J., Peek, D., and
Wenisch, T. F. The mystery machine: End-to-end
performance analysis of large-scale internet services.
In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2014), OSDI’14, USENIX
Association, pp. 217–231.

[14] Corbett, J. C., Dean, J., Epstein, M., Fikes, A.,
Frost, C., Furman, J. J., Ghemawat, S., Gubarev, A.,
Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S.,
Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura,
D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito,
Y., Szymaniak, M., Taylor, C., Wang, R., andWood-
ford, D. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 251–264.

[15] Curtsinger, C., and Berger, E. D. Coz: Finding
code that counts with causal profiling. In Proceed-
ings of the 25th Symposium on Operating Systems
Principles (New York, NY, USA, 2015), SOSP ’15,
ACM, pp. 184–197.

[16] Dai, J., Huang, J., Huang, S., Huang, B., and Liu,
Y. Hitune: Dataflow-based performance analysis for
big data cloud. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Confer-
ence (Berkeley, CA, USA, 2011), USENIXATC’11,
USENIX Association, pp. 7–7.

[17] Dooley, I., and Kalé, L. V. Detecting and using
critical paths at runtime in message driven parallel
programs. In IEEE International Symposium on
Parallel and Distributed Processing (2010).

[18] Floratou, A., Agrawal, A., Graham, B., Rao, S.,
and Ramasamy, K. Dhalion: Self-regulating stream
processing in heron. Proc. VLDB Endow. 10, 12
(Aug. 2017), 1825–1836.

[19] Garduno, E., Kavulya, S. P., Tan, J., Gandhi, R.,
and Narasimhan, P. Theia: Visual signatures for
problem diagnosis in large hadoop clusters. In Pro-
ceedings of the 26th International Conference on
Large Installation System Administration: Strate-
gies, Tools, and Techniques (Berkeley, CA, USA,
2012), lisa’12, USENIX Association, pp. 33–42.

https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://www.nagios.org
http://www.vmware.com/products/vrealize-log-insight.html
http://www.vmware.com/products/vrealize-log-insight.html

[20] Guo, Q., Li, Y., Liu, T., Wang, K., Chen, G., Bao,
X., and Tang, W. Correlation-based performance
analysis for full-system mapreduce optimization. In
Proceedings of the 2013 IEEE International Confer-
ence on Big Data, 6-9 October 2013, Santa Clara,
CA, USA (2013), pp. 753–761.

[21] Hoffmann, M., Lattuada, A., Liagouris, J., Kalavri,
V., Dimitrova, D., Wicki, S., Chothia, Z., and
Roscoe, T. Snailtrail: Generalizing critical paths
for online analysis of distributed dataflows. Tech.
rep., ETH Zurich, 2018.

[22] Hollingsworth, J. K. An online computation of
critical path profiling. In SIGMETRICS Symposium
on Parallel and Distributed Tools (1996).

[23] Krizhevsky, A., Sutskever, I., andHinton, G. E. Im-
ageNet classification with deep convolutional neu-
ral networks. In Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Asso-
ciates, Inc., 2012, pp. 1097–1105.

[24] Lamport, L. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM 21, 7 (July
1978), 558–565.

[25] McSherry, F. A modular implementation
of timely dataflow in Rust (accessed: April
2017). https://github.com/frankmcsherry/
timely-dataflow.

[26] Murray, D. G., McSherry, F., Isaacs, R., Isard, M.,
Barham, P., and Abadi, M. Naiad: a timely dataflow
system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (2013),
ACM, pp. 439–455.

[27] Ousterhout, K. Spark performance analysis (ac-
cessed: April 2017). https://kayousterhout.
github.io/trace-analysis/.

[28] Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker,
S., and Chun, B.-G. Making sense of performance
in data analytics frameworks. In NSDI (2015).

[29] Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei,
L. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision
(IJCV) 115, 3 (2015), 211–252.

[30] Sacerdoti, F. D., Katz, M. J., Massie, M. L., and
Culler, D. E. Wide area cluster monitoring with
ganglia. In 2003 IEEE International Conference

on Cluster Computing (CLUSTER 2003), 1-4 De-
cember 2003, Kowloon, Hong Kong, China (2003),
p. 289.

[31] Saidi, A. G., Binkert, N. L., Reinhardt, S. K., and
Mudge, T. N. Full-system critical path analysis.
In IEEE International Symposium on Performance
Analysis of Systems and Software (2008).

[32] Schulz, M. Extracting critical path graphs from
MPI applications. IEEE International Conference
on Cluster Computing (2005).

[33] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy,
K., Patel, J. M., Kulkarni, S., Jackson, J., Gade,
K., Fu, M., Donham, J., Bhagat, N., Mittal, S., and
Ryaboy, D. Storm@Twitter. In Proceedings of the
2014 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2014),
SIGMOD ’14, ACM, pp. 147–156.

[34] Venkataraman, S., Panda, A., Ousterhout, K., Gh-
odsi, A., Franklin, M. J., Recht, B., and Stoica, I.
Drizzle: Fast and Adaptable Stream Processing at
Scale. In Proceedings of the 26th Symposium on
Operating Systems Principles (2017).

[35] Wang, C., Rayan, I. A., Eisenhauer, G., Schwan, K.,
Talwar, V., Wolf, M., and Huneycutt, C. Vscope:
Middleware for troubleshooting time-sensitive data
center applications. In Proceedings of the 13th In-
ternational Middleware Conference (New York, NY,
USA, 2012), Middleware ’12, Springer-Verlag New
York, Inc., pp. 121–141.

[36] Yang, C.-Q., and Miller, B. P. Critical path anal-
ysis for the execution of parallel and distributed
programs. In IEEE International Conference on
Distributed Computing Systems (1988).

[37] Yen, S. H., Du, D. H., and Ghanta, S. Efficient algo-
rithms for extracting the k most critical paths in tim-
ing analysis. In Proceedings of the 26th ACM/IEEE
Design Automation Conference (1989), DAC ’89,
pp. 649–654.

[38] Zaharia, M., Chowdhury, M., Das, T., Dave, A.,
Ma, J., McCauley, M., Franklin, M. J., Shenker, S.,
and Stoica, I. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation
(2012), USENIX Association, pp. 2–2.

[39] Zhao, X., Rodrigues, K., Luo, Y., Yuan, D., and
Stumm, M. Non-intrusive performance profiling for
entire software stacks based on the flow reconstruc-
tion principle. In Proceedings of the 12th USENIX

https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/timely-dataflow
https://kayousterhout.github.io/trace-analysis/
https://kayousterhout.github.io/trace-analysis/

Conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2016), OSDI’16,
USENIX Association, pp. 603–618.

A Appendix

A.1 Model assumptions
We support both synchronous and asynchronous execu-
tion in shared-nothing and shared-memory architectures.
Most dataflow systems use asynchronous computations
on shared-nothing clusters, but sometimes synchronous
computation is supported (e.g. in TensorFlow), and sys-
tem workers can share state (e.g. in Timely). Specifically,
our model is consistent with respect to critical path analy-
sis under two assumptions:

Assumption 1 (Message-based Interaction). Every inter-
action between operators in the dataflow must occur via
message exchange, even if executed by the same worker.

Note this assumption does not preclude shared-memory
systems. Operators in the reference dataflow may share
state as long as any modification to this state is appropri-
ately instrumented to trigger a ‘virtual’ message exchange
between the workers sharing that state. We use this ap-
proach in instrumenting shared state in Timely Dataflow,
for example.

Assumption 2 (Waiting State Termination). Every wait-
ing activity in a worker’s timeline is terminated by an
incoming message, either from the same or a different
worker.

In other words, a worker in a waiting state cannot
start performing activities unprompted without receiv-
ing a message. In the activity graph, a waiting edge’s end
node must correspond to that of a communication activity,
i.e., a receive.

A.2 Instrumentation requirements
An activity may consist of sub-operations spanning multi-
ple levels of the stack from user code to OS and network
protocols. A given system can be instrumented at different
levels of granularity, depending on the use-case: a multi-
layered activity tracking approach enables more detailed
performance analysis but introduces higher overhead. We
allow this choice, but require that any instrumentation
of the reference system satisfy two properties, without
which the transient critical paths are ill-defined. The first
states that any event having prior events must be caused
by an activity earlier in time, i.e. any “out-of-the-blue”
events in (ts, te] indicate insufficient instrumentation:

Property 1 (Minimum in-degree) Let G[ts,te] = (V,E) be
the snapshot of activity graph G in time interval [ts,te].
Let also Vs ≡ {v ∈ V | @v′ ∈ V : v′[t] < v[t]} be a set of
vertices in G[ts,te]. A vertex v ∈ V \Vs has in-degree at
least one.

The second states that at no point do all system work-
ers perform waiting activities while no communication
activity is occurring. Such behavior would imply dead-
lock, and so any such points in the activity graph of a
non-blocked computation indicates insufficient instrumen-
tation:

Property 2 (Communication Existence) Let G[ts,te] =

(V,E) be the snapshot of an activity graph G in [ts, te],
and τ ∈ [ts, te] be a point in time. Let S ≡ {e = (vi,v j) ∈
Ew ⊆ E | e[p] = Waiting, vi[t] ≤ τ ≤ v j[t]}. If |S | = Nτ,
where Nτ is the number of active workers of the reference
system at time τ, then ∃e′ = (vk,vm) ∈ Ec ⊆ E for which
vk[t] ≤ τ ≤ vm[t].

These two properties can also checked efficiently on-
line to inform users when the ingested activity logs are
incomplete. For example, instrumentation (or associated
log preprocessing) can guarantee that no waiting activities
are created as long as the corresponding communication
activity, which caused the waiting activity to end, has not
been observed.

A.3 Proofs for Equations of Section 3.2

First, we provide a proof for Eq. 3:

CPe =

∑i=N
i=1 qi

e
N =

c(e) · e[w]
N(te−ts) ∈ [0,1]

Recall that e is an activity edge in the PAG snapshot,
N is the total number of transient critical paths in the
snapshot, qi

e is ratio of the activity’s duration to the total
duration of the i-th transient critical path (the ratio is 0 if
the activity edge is not part of the i-th path), 0 ≤ c(e) ≤ N
is the number of transient critical paths the activity e
belongs to, e[w] is the weight of the activity e, i.e., its
duration, and [ts, te] is the snapshot window size.

Without loss of generality, we assume that the transient
critical paths ~pi the activity edge e belongs to are
numbered from i = 1 to i = c(e). Then:

CPe =

∑i=N
i=1 qi

e
N =

∑i=N
i=1

e[w]
|| ~pi ||

N =

∑i=c(e)
i=1

e[w]
|| ~pi ||

N + 0 =

∑i=c(e)
i=1

e[w]
|| ~pi ||

N

All transient critical paths in the snapshot have the
same length ||~pi|| (in time units), which is equal to the
duration of the snapshot te− ts. Hence:

CPe =

∑i=c(e)
i=1

e[w]
te−ts

N =

∑i=c(e)
i=1 e[w]

N·(te−ts) =
c(e)·e[w]
N·(te−ts)

Now we provide the proof for Eq. 5:∑
∀c ∈ G

∑
∀e:e[p]=c CPe = 1

Recall that c denotes an activity type, e.g., serialization,
and e[p] is the type of the activity edge e in the snapshot
G[ts,te]. We have:

∑
∀c∈G

∑
∀e:e[p]=c CPe =

∑
∀e∈G CPe =

∑
∀e∈G

∑i=N
i=1 qi

e
N =

=
∑
∀e∈G

∑i=c(e)
i=1

e[w]
|| ~pi ||

+0

N =
∑
∀e∈G

∑i=c(e)
i=1

e[w]
|| ~pi ||

N =

=

∑
∀e∈G

∑i=c(e)
i=1

e[w]
te−ts

N =

∑
∀e∈G

∑i=c(e)
i=1 e[w]

N·(te−ts) =
N·(te−ts)
N·(te−ts) = 1

since
∑
∀e∈G

∑i=c(e)
i=1 e[w] denotes the sum of the weights

(durations) of all activity edges that comprise all N tran-
sient critical paths in the snapshot, which is equal to
N · (te− ts).

A.4 Clock alignment
Computing critical paths only needs logical time, i.e. the
happens-before relationship between events. In practice
we are using wall-clock time as a stand-in for Lamport
timestamps [24] to establish partial ordering of events.
Performance statistics such as summaries, however, do
require real time.

A practical system for critical path analysis must there-
fore address issues of clock drift (where clocks on differ-
ent nodes run at different rates) and clock skew (where
two clocks differ in their values at a particular time).

Clock drift only affects activities running on the same
thread with durations greater than the drift. Even a drift
of 10 seconds/day translates to 0.1ms inaccuracy for activ-
ities taking around a second, which is probably tolerable.
Clock skew is not an issue for activities timestamped by
the same thread, but might be for communication activi-
ties.

In SnailTrail, we assume that the trend toward
strong clock synchronization in datacenters [14] means
that clock skew is not, in practice, a significant problem
for our analysis. If it were to become an issue, we would
have to consider adding Lamport clocks and other mecha-
nisms for detecting and correcting for clock skew.

	Introduction
	Critical Path Analysis background
	Online Critical Path Analysis
	Transient Critical Paths
	Critical Participation (CP metric)
	Comparison with existing methods

	Applicability to dataflow systems
	Activity types
	Instrumenting specific systems

	SnailTrail system implementation
	CP-based performance summaries
	Evaluation
	Experimental setting
	Instrumentation Overhead
	SnailTrail Performance
	Comparison with existing methods
	SnailTrail in practice

	Related Work
	Conclusion
	Appendix
	Model assumptions
	Instrumentation requirements
	Proofs for Equations of Section 3.2
	Clock alignment

