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Abstract
Operating systems fail both to efficiently exploit, and to
effectively manage, the considerable hardware resources
of modern network interface controllers. We survey the
kinds of hardware facilities available and their applica-
bility, and then investigate (and critique) the reasons why
OS designers eschew core support for such features.

We then describe Dragonet, a new network stack de-
sign based on explicit descriptions of NIC capabilities,
aimed at making the best use of today’s and tomor-
row’s networking hardware. Dragonet represents both
the physical capabilities of the network hardware and the
current protocol state of the machine as dataflow graphs.
We then embed the former into the latter, instantiating
the remainder in software.

1 Introduction

Networks are getting faster. Cores are not. If computers
are to handle future bandwidth and latency requirements,
they will need a combination of parallelism across cores,
and specialized network interface hardware.

Without parallelism, applications cannot scale to han-
dle more data in unit time. Without specialized hardware,
processing of incoming network packets before demul-
tiplexing (and of outgoing ones after multiplexing) ex-
ecutes serially in software, leading to basic scalability
limits via Amdahl’s law. Worse, multiplexing aside, the
limits of multicore scaling [9] will ultimately make soft-
ware protocol processing a bottleneck.

Fortunately, modern network interface controllers are
highly complex devices, featuring a bewildering array of
functions: multiple receive and transmit queues, TCP
offload, traffic shaping, filter rules, virtualization, etc.
Most of these aim at improving performance in some
common enough cases: increasing bandwidth, improv-
ing QoS isolation, reducing CPU utilization, minimiz-
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ing latency, etc. These also frequently work: Section 2
presents a brief survey of such features, their benefits,
and some results of our own confirming the advantages
of multiple receive queues for improving performance
isolation, while also observing their sensitivity to con-
figuration changes.

Unfortunately, OS support for these features is piti-
ful. As we discuss in Section 3, excepting some ad-hoc
features in Windows [26], an OS protocol stack is based
on a simple 1980s NIC and does not cope well with to-
day’s plethora of feature sets and their programming in-
terfaces. Indeed, Linux explicitly avoids support for all
but the simplest hardware protocol offload, for reasons
that make sense from the perspective of the kernel main-
tainers, but which do not hold in a broader perspective.

The problem is thus forced onto hardware vendors.
Support for such functionality is isolated in individ-
ual device drivers, resulting in a mess of non-standard
configuration tools, arbitrary resource policy hard-coded
into drivers, and in some cases completely replicated net-
work protocol stacks. This is madness: the OS should
be managing these resources, allocating them appropri-
ately among competing applications based on system-
wide policy, and providing appropriate abstractions so
that applications can benefit without being rewritten for
each new piece of hardware.

We are rethinking the OS network stack around ex-
plicit, machine-readable descriptions of network hard-
ware. Whereas to date the only description of a NIC the
OS can work with is a driver binary with a generic in-
terface, in Section 4 we show how to describe NICs as
dataflow programs operating on packets. We embed the
associated graphs into a dataflow graph representation of
the current OS network state. The approach has many
potential benefits: it addresses most of the issues in Sec-
tion 3, and can provide detailed performance models to
guide OS resource allocation policy.
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2 The state of NIC hardware

There is a long history of offloading protocol processing
to NICs. We now survey the broad landscape of modern
NIC features, and the performance benefits they promise.

Even simple, old Ethernet NICs (e.g. [37]) provide
functionality like multicast address filtering, to reduce
CPU load caused by processing unwanted packets. Early
NICs also reduced CPU load by offloading IP check-
sum calculation and validation of packet lengths, proto-
col fields, etc. The value of this functionality by itself is
now debatable as CPUs are much faster, but it remains as
a prerequisite for further acceleration.

Starting from relatively simple TCP Segmentation Of-
fload (TSO), vendors have implemented increasingly
complex TCP Offload Engines (TOEs), experimenting
with different mixes of software and hardware function-
ality, including the use of embedded processors [18] and
intelligent coalescing of interrupts based on packet prop-
erties [46]. The problem of handing off connections
between OS and offload stacks has also been investi-
gated [19]. TOEs can improve web server capacity by an
order of magnitude [10], but they remain controversial
due to complexity [44] and limits to applicability [27],
an issue we return to in Section 3.

Multicore processors have also led to NIC features
to aid scalability: multiple hardware queues for send
and receive, Receive-Side Scaling (RSS), and config-
urable per-queue interrupt routing. The value of such
features has been shown in many scenarios, for exam-
ple, Routebricks provides a detailed analysis for software
routers [7]. Affinity accept [34] extends this work to con-
nection setup packets, deriving further benefits at the cost
of minor changes to POSIX socket semantics.

Networks are now so fast that the memory system can
become the bottleneck. Direct Cache Access (DCA) de-
livers incoming packets of a flow to the data cache of
a selected core, bypassing RAM and thereby reducing
memory bandwidth and latency, although performance
is highly sensitive to correct configuration [12, 21].

At the same time, the CPU-intensive nature of cryp-
tographic operations have led to some NICs integrat-
ing SSL and other crypto accelerators onto the data
path [5]. Increasingly important network protocols like
RDMA [36] and iSCSI [31] are designed assuming hard-
ware acceleration, and supercomputers employ NICs
with hardware support for MPI.

The rise of virtualization has also led to NIC sup-
port for virtual devices that can be directly mapped into
virtual machines [33, 35]. Plentiful hardware queues
help to provide quality of service and isolation. Mod-
ern virtualization-aware NICs [42] also provide onboard
IOMMUs for address translation and protection on DMA
transfers, per-flow queuing, traffic shaping on transmit,

and even built-in switching functionality [39].
Given this complexity, it is unsurprising that some

NICs are now fully programmable processors them-
selves [30], and are even used to prototype TCP offload
engines [1] and self-virtualizing interfaces [35], as well
as applications like intrusion prevention systems which
perform wire-speed inline packet filtering [4]. On the
other hand, configurable hardware such as FPGAs are
used for niche applications such as algorithmic trad-
ing [23] and are integrated in some high-end NICs [43].

While undoubtedly useful, realizing the full benefit
of hardware NIC features is difficult. In an arbitrary,
but illustrative, example, each graph in Figure 1 shows
the result of the same experiment run on different Linux
servers using an Intel 82599 10GbE NIC [17] with sup-
port for hardware queues. We run two iperf [45] server
processes on different cores, while the iperf clients
execute on other machines. One client measures TCP
throughput for 60 seconds, while the other adds cross-
traffic load to the experiment after 10 seconds. The
DEFAULT data shows the behavior of regular Linux try-
ing to assign dedicated queues automatically, OPTIMAL
the performance of manually dedicating queues and set-
ting interrupt forwarding to the appropriate cores, and
SUBOPTIMAL the impact of suboptimal interrupt affinity.

We make three observations: First, hardware features
can dramatically affect performance: in the first plot, the
default configuration deals poorly with cross-traffic. Sec-
ond, Linux’s policy can do well in some cases but fails
to consistently find good configurations during a run (the
second plot). Finally, the third plot shows poor perfor-
mance of all the test configurations for at least one server.

In summary, hardware vendors incorporate ever-more
sophisticated capabilities into NICs, with demonstrable
benefits, but in most cases such benefits are not auto-
matic, and careful system-specific configuration may be
needed to fully realize them.

3 The state of OS network support

Modern OSes do not provide a good framework for NIC
accelerators, and TCP Offload is a good example which
illustrates the wider issues surrounding OS support for
new NIC functionality. Linux does not support TOEs,
for reasons the developers have made clear [44], and
Mogul [27] also surveys similar arguments. We recap,
and critique, these arguments here.

Deployment issues: These take many forms: Intelli-
gent NICs use proprietary firmware the OS vendor can-
not maintain, leading to security bugs and poor RFC
compliance, configuration requires vendor-specific tools,
support can only come from the hardware vendor (often
a small company likely to go under), etc. Consequently,
the OS is not granted the visibility into, and control over
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Figure 1: Impact of dedicating hardware queues and setting interrupt affinity on TCP throughput.

hardware required to provide solid OS functionality. We
remark that GPUs face a similar visibility challenge, and
researchers are exploring better ways to integrate them in
the OS [38].

From a research perspective this is politics and busi-
ness relationships, and it is myopic to thus exclude a
large area of the design space: we should think about
appropriate designs, not short-term irritations having lit-
tle to do with technology. Consequently, in our work we
deliberately bracket these considerations. Instead of shy-
ing away from programming any hardware that is not a
CPU, OS researchers should pursue OS designs that aim
to manage them [32].

Any performance gain is short term: The argument
goes that cores will always get fast enough to render any
hardware feature irrelevant for performance.

While valid once upon a time, this thinking is an out-
dated relic of the “free lunch” software era. Until the
physics of logic gates changes, cores will not get faster.

Multiplexing is an essential part of protocol process-
ing, and any attempt to move this into software results in
a serialization point where Amdahl’s law fundamentally
limits scalability. Unlike 20 years ago with multimedia
networks, sitting around and waiting will not render in-
telligent NICs redundant. Moreover, with processor ar-
chitecture moving towards large sets of specialized pro-
cessing elements [9], we can view NIC hardware as one
subset of this trend. We need to understand how to write
OS software for this kind of system.

The benefits are marketing fiction: Mogul [27] ob-
serves that hardware interfaces were often poorly de-
signed for performance under many common workloads.
For example, RDMA shows highly idiosyncratic perfor-
mance characteristics: the OS overhead of descriptor
management can frequently outweigh the gain from the
hardware [11]. Buffer and flow management and inter-
face complexity reduce the utility of intelligent NICs.

Of course, hardware features rarely improve perfor-
mance in all cases and must be used judiciously. One
can even build models to predict the value of protocol

offload for different applications [40]. Also, sometimes,
NICs just get it wrong.

However, this is no reason to ignore hardware which
can deliver benefits in many cases. OS designers should
critique such hardware more effectively and encourage
designers to listen to their concerns [28]. This will not
happen while OS maintainers ignore the hardware and
leave the market to a small user group with a narrow set
of requirements such as high frequency trading [23] and
high performance computing [47].

The hardware lacks functionality: Modern OS pro-
tocol stacks are feature-rich, with sophisticated filtering
and scheduling, and uniform configuration interfaces.
In contrast, NICs which try to assume such functions
never support the full capabilities of the OS stack, have
hardware-specific resource limits (e.g. on flows), can suf-
fer remote resource exhaustion attacks, and often require
special tools for configuration.

This is true, but these are research challenges, not rea-
sons to avoid modern hardware. We propose here one
framework which aims to work around limitations, and
move processing between hardware and software based
on requirements, not ease of design: some users may
care more about packet scheduling than filters, others
vice versa, for example. The problem should be one of
placement of functionality for a given workload, which
we address explicitly in Section 4.

Integration is a nightmare: Supporting a complex
piece of NIC hardware in a modern OS is an engineer-
ing effort requiring “massive, heavily invasive hooks into
the network stack” [44]. Worse, having some flows or
state handled by hardware and some by the OS elimi-
nates the global system view otherwise enjoyed by the
kernel, making it hard to manage resources.

We turn this argument around and claim it shows a ba-
sic flaw in current protocol stacks. An OS which mani-
festly fails to exploit the hardware to deliver good per-
formance in a range of scenarios is simply a poorly-
designed OS. The discussion also generalizes beyond
Linux and TOE to most other NIC features and OSes.
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For example, virtualization support on NICs [8] could
deliver benefits to a single OS via reduced CPU usage
and performance isolation, as with other virtualization
support [3].

In response to the lack of core OS support and the dif-
ficulty of integration, NIC vendors have three choices.
First, they can encode policy in the driver and hide it
from the OS - for example, Intel 10GbE Linux drivers
monitor TCP connections and try to dedicate a queue to
a connection after 20 packets have been sent. As we have
seen, this is sometimes good and sometimes bad, in that
the OS has no control over this policy and cannot connect
it with other resource allocation decisions.

Second, they can expose the functionality to specially-
written applications using a non-standard control inter-
face [15] or, in some cases, a new, separate network
stack [41]. This works for niches (Finance, HPC), but
is no long-term solution. Vendors realize this, but it can
be the best option to gain revenue today.

Third, they can hide complex functionality and pol-
icy in hardware behind a compatibility interface. This is
perhaps the worst possible option [28], since it prevents
a more adventurous OS design from exploiting or man-
aging the hardware effectively at all.

The objections above should be research challenges,
and OS researchers should step up to the plate and pro-
vide a solution. We should describe NIC capabilities and
limitations to the OS and equip it with an infrastructure
to map application requirements and system-wide poli-
cies to the available hardware. We argue this can give
better performance for applications, and a freer environ-
ment for NIC designers to innovate.

4 Dragonet: talking about NICs

We are designing Dragonet, a new network protocol
stack initially targeting the Barrelfish research OS [2].
Our goals are to, first, integrate new hardware features
while minimizing driver bloat; second, regain a global
view of system resources and give the OS control of allo-
cation policy; third, manage user expectations by switch-
ing between hardware and software implementation as
requirements change; and finally deliver understandable
performance: the models used by the OS to manage re-
sources should explain how the performance of the stack
changes.

Dragonet is inspired by much previous work, such as
the use of dataflow graphs to represent protocol stack
state [13,20,24], and systems which represent and sched-
ule flows as first-class entities in the system [6, 29]. The
key novel feature of Dragnonet is how we propose to ex-
ploit specialized hardware using graph embedding.

Physical Resource Graphs: Hardware features in
Dragonet are described explicitly by a Physical Resource
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isValidUDP

applyFilter

RXQueue0 RXQueue1

Figure 2: Intel 82576 PRG for the receive path

Graph (PRG). This captures the NIC capabilities and can
be viewed as a dataflow program which the hardware ex-
ecutes when sending or receiving a packet. Currently we
write PRGs using a Haskell-based domain-specific lan-
guage; Figure 2 shows a simplified PRG (generated au-
tomatically from the specification) for the receive path of
an Intel 82576 1GbE NIC [16], a relatively simple NIC
which nonetheless supports RSS and checksum offload.
The PRG for the NIC 82599 used in Section 2 is much
more complex, and we omit it for space reasons.

PRGs are a critical feature of Dragonet: they allow the
OS to reason about the diverse capabilities of NIC hard-
ware without a priori knowledge. The PRG is part of the
OS-driver interface, putting resource policy back in the
core OS (where it belongs), while hardware configura-
tion remains in the driver (where it should be). PRG arcs
and nodes can be annotated with processing costs such
as latency to guide OS policy decisions.

The Logical Protocol Graph: Like the x-kernel [13],
Dragonet views the state of the OS stack as a graph of
protocol operations, the Logical Protocol Graph (LPG).
Figure 3 shows the LPG for the receive path of the ex-
periment in Section 2.

The LPG captures the global OS network state at a
high level, and can be viewed as a dataflow program ex-
ecuted whenever a packet enters the system (from either
an application or the network). For correctness, the OS
must instantiate the function of each LPG node either in
hardware or software. Data must be passed appropriately
between these nodes. The LPG changes as connections
(or connectionless endpoints) come and go, and so in-
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stantiation must be incremental.
Note that a graph representation in the OS does not im-

ply strictly structuring packet handling code using an op-
erator for each node, as in the x-kernel [13], Click [20],
or P2 [24]. Starting from an LPG, many software options
are possible, including a layered structure similar to ex-
isting stacks in Linux, Windows, etc. However systems
like Melange [25] have shown that incorporating seman-
tic information into the network stack can result in more
efficient implementations. This is in part due to the pos-
sibility of global optimizations of memory management.

The LPG has two further important properties. First,
arc annotations can express properties of flows similar to
PRG, such as latency guarantees or priorities. Our first
non-trivial annotations will use Network Calculus [22] to
specify connection requirements.

Second, we can perform semantics-preserving trans-
formations on the LPG, much as the relational algebra
specifies how query plans can be transformed without
changing query semantics. In a software-only implemen-
tation, this allows us to use cost-based optimization to lay
out optimal protocol stacks, for example to drop incom-
ing packets early. It can also be extended to encapsulate
the cost of traversing inter-core links, and thereby aid in
placing functionality in a NUMA machine, for example.

In practice, we find it is easy to express simple rewrite
rules on LPGs, but a complete semantic treatment is
highly complex, and an interesting area of research.

Our design allows us to fully integrate general purpose
cores embedded on NICs into Dragonet. Consequently,
we can schedule software-provided module implementa-
tions on such cores to minimize communication cost.

PRG embedding: At its simplest, exploiting a NIC’s
hardware becomes a matter of embedding as much of the
PRG as possible into a valid transformation of the LPG,
and then instantiating the rest of the LPG in software.
Figure 3 shows an example LPG where nodes which can
be mapped to hardware capabilities are shaded. Abstract
graph embedding is NP-complete, but in our case there
are a limited number of options (for example, the net-
work itself is a fixed node in both graphs) and early ex-
periments suggest it is highly tractable.

5 Conclusions and Challenges

The Dragonet approach overcomes the limitation of fixed
boundaries between hardware and OS, and between ap-
plication and OS. By making these boundaries flexible,
applications can use the hardware better whenever it is
available, and the OS has precisely the global view of
system state which is denied to Linux (and other OSes)
with current designs.

Naturally, there are many unsolved challenges. To
talk about NICs usefully, the PRG also requires a perfor-
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Figure 3: Example for a LPG. The gray boxes represent
modules mapped to hardware provided features.

mance model of the hardware and a way to calculate the
performance characteristics of a path through the graph.
NICs have hardware limits (queues, flow table entries,
filter rules, etc.), and Dragonet has to deal with intelli-
gently spilling these to software. Some NICs can also
be configured in different ways, complicating the cor-
responding PRGs. Also, NIC semantics and the LPG
don’t always match: for example, many perform only
partial flow classification using hashing. Finally, some
hardware doesn’t fit our current core/fixed function di-
chotomy, for example micro-engines [14].

Nevertheless, Dragonet explores one way to build a
stack which assumes and embraces a wide variety of
complex NIC features, rather than over-abstracting them
away. We claim this is an important problem: if OS de-
signers do not fix their designs, we face the uncertain
prospect of NIC designers burying their clever ideas in
hardware without any OS policy control at all.
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