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Abstract
Considerable research effort has recently been devoted
to the design ofstructured peer-to-peer overlays, a term
we use to encompass Content-Addressable Networks
(CANs), Distributed Hash Tables (DHTs), and Decen-
tralized Object Location and Routing networks (DOLRs).
These systems share the property that they consistently
map a large space of identifiers to a set of nodes in a
network, and while at first sight they provide very simi-
lar services, they nonetheless embody a wide variety of
design alternatives. We present the case for developing
application-driven benchmarks for such overlays, give a
model of the services they provide applications, describe
and present the results of two preliminary benchmarks,
and discuss the implications of our tests for application
writers. We are unaware of other empirical comparative
work in this area.

1 Introduction and Motivation

This paper reports on our ongoing work to devise use-
ful benchmarks for implementations of structured peer-
to-peer overlays, a term we use to encompass Content-
Addressable Networks (CANs), Distributed Hash Tables
(DHTs), and Decentralized Object Location and Rout-
ing networks (DOLRs). We argue that benchmarks are
essential in understanding how overlays will behave in
a particular application. Our work is driven partly by
our experience implementing the OceanStore [6] and
Mnemosyne [4] systems.

We want to benchmark structured peer-to-peer over-
lays for three reasons. The first is naturally for pure per-
formance comparisons. However, in this paper we are not
interested in declaring one overlay “better” or “worse”
than another by measuring them on the same scale. The
real value of application-driven benchmarks is to demon-
strate how the design choices embodied in different over-
lay designs lead to different performance characteristics
in different applications. Our aim is to relate three dif-
ferent areas: the design choices of the various overlays,
their measured performance against our benchmarks, and
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the kind of performance and scaling behavior that users
might see for their own applications. Our final motiva-
tion in benchmarking is our desire to provide overlay de-
signers with a metric of success as expressed by applica-
tion builders. Even a less-than-perfect benchmark would
allow the designers of new algorithms to compare their
work against previous designs, raising the barrier to entry
for algorithms which hope to lure a large user base.

In the next section, we present a generic service model
for structured peer-to-peer overlays which we use as a
framework for measurement. Such a model attempts to
capture the characteristics of an overlay which are of
interest to an application writer. In Section 3, we de-
scribe our benchmarking environment, consisting of the
Chord [13] and Tapestry [5, 16] implementations running
on the PlanetLab testbed. In Section 4 we discuss two
benchmarks for overlays, and the results of running them
against our Chord and Tapestry deployments.

2 A Common Service Model

Before describing our benchmarking work, we present a
generic service model for structured peer-to-peer over-
lays which we use as a framework for measurement. Such
a model attempts to capture the characteristics of overlays
which are of interest to an application writer.

The service model is in some ways like an Application
Programming Interface (API), but it differs from an API
in that it tries to capture the possible behavior of function-
ality presented to a user of the overlay, rather than explic-
itly specifying how the functionality is invoked. Further-
more, the model does not attempt to capture the routing
mechanisms of the overlay except insofar as they mani-
fest themselves in observed application performance, un-
der “normal” conditions. We are not at this stage con-
cerned with benchmarking overlays under attack in the
ways described in [3], though this is clearly a direction
for future work.

Figure 1 shows a functional decomposition of the ser-
vices offered by various structured peer-to-peer over-
lays.1 All existing overlays of which we are aware con-
sist of anidentifier space,� (often the space of 160-bit

1This figure is a simplified version of that presented in the work to
establish a common API for such systems [2].
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Figure 1:Overlay Service Decomposition.The function-
ality exposed by structured peer-to-peer overlays can be
divided into a mapping of keys onto nodes, mechanisms
to store and retrieve data items, and mechanisms to route
to or locate data items stored according to a policy outside
the overlay’s control.

numbers), and anode space,� (often some subset of the
set of IPv4 addresses), which consists of the nodes par-
ticipating in the overlay at a given moment. The lowest
level of an overlay, thekey-based routing layerembodies
a surjective mapping:

����� � � � �

which maps every identifier� � � to a node� � � .
We chose the name����� to embody the idea that the
����� is the node ultimately responsible for some por-
tion of the identifier space. To compute����� , it is gen-
erally necessary to gather state from several successive
nodes in the system; these nodes may all be contacted
from the querying node itself, as in the MIT Chord im-
plementation, or the query may be routed through the
network, with each relevant node contacting the next, as
in the Berkeley Tapestry implementation. In the origi-
nal Chord paper [13], these two styles are respectively
termediterativeandrecursive; we will continue the use
of this terminology in this work.

The most basic operations application writers are inter-
ested in is evaluating this function for some� � �, and/or
sending a message to the node��������. In Chord,
the ����� function is directly implemented, and called
��� ��		����� , while in Tapestry it is provided by the
���
� 
� ���
����� function which sends a message�
to ����� ���.

Above this basic facility many applications are also in-
terested using overlays to store or retrieve data. To date,
there are to our knowledge two different ways in which
this functionality is achieved. In the first, a DHT is im-
plemented atop the routing layer by mapping the names
of data items into�, and storing each object at the owner
of its identifier.2 In this case, an application may call the
function��
��� �� to store the datum� with name�, or

2A common mapping of this sort is exemplified by CFS [1], which

��
��� to retrieve the datum named�. For load balanc-
ing and fault tolerance, data items are often replicated a
nodes other than the owner.

The second common method of implementing a stor-
age layer in an overlay is to place data throughout the
system independent of the overlay, but use the overlay
to place pointers to where the data is stored. Algorithms
using this second technique are called DOLRs to empha-
size that they locate or route to data without specifying
a storage policy. The functionality exposed by DOLRs
consists of a��������� operation, by which a node ad-
vertises that it is storing a datum with name�, and a
���
� 
� ���	
����� operation, by which a message�
is routed to a node which has previously published�.

While many applications benefit from the higher lev-
els of abstraction provided by some overlays, others are
hindered by them. To Mnemosyne, for example, the addi-
tional performance cost of DHT or DOLR-like function-
ality is a disadvantage; in contrast, the DOLR properties
of Tapestry are integral to the OceanStore design. We
conclude this section by noting that the decomposition in
Figure 1 is not a strict layering. While at a functional
level, a DOLR may be implemented by a DHT and vice-
versa, we show in the results section of this paper that
there are performance consequences of doing so.

3 Experimental Setup

Our experiments are performed on PlanetLab [9], an
open, shared testbed for developing and deploying wide-
area network services. In our tests we use 83 of the nodes
spread across the United States and Europe with up to
three nodes at each site. While the hardware configura-
tion of the machines varies slightly, most of the nodes are
1.2 GHz Pentium III CPUs with 1 GB of memory.

To gain some notion of the shape of the network, we
performed two simple experiments. First, we pinged ev-
ery host from every other hosts ten times and stored the
minimum value seen for each pair; the results are graphed
in Figure 2. The median inter-node ping time is 64.9 ms.
Next, we had each node use the Unixscpcommand to
transfer a 4 MB file from each of the machines plan-
lab1.cs.caltech.edu, planetlab1.lcs.mit.edu, and ricepl-
1.cs.rice.edu. This test is crude, but we only wanted a
rough idea of the throughput available. The median ob-
served throughput was 487 kB/s. The correlation be-
tween observed throughput and ping time is shown in
Figure 3; as predicted analytically by Padhye et al. [8],
TCP throughput and round-trip time show an inverse cor-
relation. Since well-behaved peer-to-peer applications
are likely to use TCP for data transfer in the foresee-
able future, this correlation is significant; it implies that

associates a data block� with an identifier� � ���� ��� and stores the
block contents at node� � ���������� ����.
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Figure 2: Distribution of round-trip times in Planet-
Lab. Region A (0–100 ms) contains 72.3% of the times,
Region B (100–275 ms) contains 26.6%, and Region C
(275–400 ms) contains the the negligible remainder.

nearby nodes are likely to observe higher throughput on
data transfers than distant nodes.

Our experiments use the latest MIT implementation of
Chord3 as of September 23, 2002, and the Berkeley im-
plementation of Tapestry4 from the same date. Chord is
implemented in C++ while Tapestry is implemented in
Java atop SandStorm [15]. To test them both under the
same framework, we extended the Chord implementa-
tion to export thefind successorfunctionality to the local
machine through an RPC interface over UDP. We then
built a stage which used this interface to provide access
to Chord’s functionality from within SandStorm. To test
the overhead of this wrapping, we started a single node
network and performed 1000 calls tofind successorfrom
within SandStorm; the average call took 2.4 ms.5 As we
show below, this is a small percentage of the overall time
taken by eachfind successoroperation.

To run an experiment with Chord, we start a Chord in-
stance running this gateway for each node in the test, al-
low the network to stabilize, and then bring up the bench-
marking code for each machine. To run an experiment
with Tapestry, we bring up the Tapestry network first and
allow it to stabilize, then we begin the benchmark.

4 Experimental Results

In this section we describe our experiments and analyze
their results. While these experiments examine only a few
performance characteristics of the designs, they demon-
strate several counter-intuitive results of interest both to
researchers in the area and application designers.

3Available at http://www.pdos.lcs.mit.edu/chord/.
4Available at http://oceanstore.cs.berkeley.edu/.
5This small delay only occurs once for each computation of the suc-

cessor of a given identifier, not once per hop during that computation.
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Figure 3: PlanetLab Inter-node Throughput.Through-
put is inversely proportional to ping time.

4.1 Find Owner Test

Our first benchmark measures thefind owner function.
It tests thefind successorfunction under Chord; under
Tapestry it is implemented as aroute to root function
with a response from the root to the query source over
TCP. In the test, each node in the network chooses 400
identifiers uniformly and randomly from the identifier
space and evaluatesfind owner on each, timing the la-
tency of each operation and waiting one second between
them. All nodes perform the test concurrently.

Relevance: The find owner functionality is used by al-
most every system built on an overlay. It is used to
read and write data in CFS, PAST, and Mnemosyne, and
to find candidate archival storage servers in OceanStore.
With systems such as CFS and Mnemosyne, where the
individual units of storage are small (on the order of disk
blocks), the latency of thefind owneroperation can dras-
tically affect the time to perform a read or write.

Results: Figure 4 shows the median latency of the
find owner operation implemented using Chord as a
function of the ping time between the query source and
the discovered owner. Since in Chord the owner is not
generally contacted when evaluating the function, the la-
tency is roughly independent of the ping time. However,
the distribution of nodes in PlanetLab causes the median
latency to rise somewhat with increasing distance: if a
query begins in a remote, sparsely populated section of
the network, it will with high probability talk to the more
populated portions of the network at some point. It is
these same query sources that are likely to have a inter-
node ping times in the upper portion of the range; hence
the correlation.

Figure 5 shows the same graph, but using Tapestry to
implementfind owner. In contrast to Chord, the owner is
always contacted in computing this function in Tapestry,
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Figure 4: Chordfind ownerlatency.

Median latency of� � � Chord Tapestry
find owner(measured) 62.3 85.2
call owner(estimated) 94.8 51.1

Table 1: Summary offind ownerresults. Times for the
call owneroperation are estimated using the ping times
shown in Figure 2. All times are in milliseconds.

so thefind owner latency should never be lower than
the ping time. Ping times do vary between when they
are measured and the test in question however, so some
points fall below the line� � �. In general, though,
Tapestry behaves as predicted in previous work [11]; the
time to find the owner is roughly proportional to the net-
work distance between the owner and the query source.

Discussion: A summary of thefind owner results is
shown in Table 1. First, the medianfind owner time
in Chord is less than the median inter-node distance in
PlanetLab. Given that eachfind owner computation is
expected to perform several RPCs, this result is some-
what surprising. We believe it arises from a combination
of the skewed network distribution of PlanetLab and the
optimization on Chord routing described in [1], whereby
the latest Chord implementation chooses its next hop
by weighting the distance traveled through the identifier
space with the expected network cost of that hop; hops
that travel furthest towards the destination identifier for
the least cost are preferred. In our tests so far, there are
still a fairly small number of nodes, resulting in only a
few hops being necessary to compute owner. This means
that a query starting on a node in Region A of Figure 2
would be likely to stay in within that region, where there
are many short hops to choose.

Also shown in Table 1 are estimated times to send a
message to the owner of an identifier using each algo-
rithm; we call this operationcall owner. In Chord, it
requires an extra network message to the owner, while
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Figure 5: Tapestryfind ownerlatency.

in Tapestry it merely skips the return message used in
thefind ownerbenchmark. Whereas Chord is 37% faster
than Tapestry in ourfind owner tests, we see that it is
86% slower on the estimatedcall owner times. Given
that the Chord implementation we used implemented it-
erative lookup, this result is not surprising. We expect an
implementation using recursive lookup would be quicker.

We can also use thefind ownertimes to make a rough
estimate of the median time to retrieve a data block from
the owner. We first compute the median time to retrieve a
block of negligible size. In Tapestry it is no different than
the find owner time, or 85.2 ms. In Chord, retrieving a
block requires an extra round trip to the owner; adding the
ping time to the owner to each of the points in Figure 4,
we compute a median retrieval time of 121.9 ms.

Estimating the time to retrieve larger blocks is a matter
of adding the time to transfer the additional bytes. As-
suming the throughput between the query source and the
owner is the median throughput of 487 kB/s, a 4 kB block
takes only 8 ms, so a system like CFS could expect to see
a 28% improvement in read time by using Tapestry. On
the other hand, systems that fetch whole files from a sin-
gle root (such as PAST) would not benefit as much. For
example, for file sizes larger than 298 kB, the read time
using Chord would be within 5% of the read time using
Tapestry. There is much to be said for simplicity of de-
sign, and the more complex design of Tapestry is hard to
justify without significant performance advantages.

Our computed times, of course, are only estimates; if
such computations were sufficient for judging algorith-
mic performance, there would be no need for benchmark-
ing. As such, we have already begun further testing to
directly measurecall ownerand block retrieval times.

4.2 Replica Location and Retrieval Test

Our next test is a replica retrieval test. In Chord, this
test is simply thegetoperation implemented in DHASH,
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Median latency of� � � Chord Tapestry
locate operation 60.5 64.7
ping to located replica 54.5 39.1
0-byte replica retrieval 116.8 64.7

Table 2: Summary of locate benchmark results.The
replica retrieval times are estimated using the ping times
shown in Figure 2. All times are in milliseconds.

the storage layer underlying CFS. In Tapestry, it is imple-
mented as thelocateoperation, followed by a response
over TCP with the requested data.

Relevance: An interesting feature of Tapestry is that it
tries to route to theclosestreplica to the query source if
more than one replica is available. In contrast, although
DHASH generally provides several replicas of each data
block in CFS, there is no direct mechanism in Chord to
locate the nearest replica. Instead, it always locates the
one stored on the����� of the block’s identifier, and pro-
visions to find closer replicas must be implemented at the
application layer.

Locating nearby replicas has several benefits, the most
obvious of which is performance; as Figure 3 shows,
there is some correlation between ping time and through-
put. Replicas close in ping time to the query source are
more likely to have a high throughput path to the lat-
ter; they can thus not only deliver the first byte of a data
item faster than replicas further from the query source,
but they can also provide the last byte faster. Applica-
tions with high performance needs and multiple replicas
of each data object should thus value locality highly.

In addition to performance, locality can also help pro-
vide availability; the closer a discovered replica is, the
less likely it will fall on the other side of a network par-
tition than the query source. Finally, by serving each
read from the replica closest to the reader, a system may
achieve better resource utilization and load balance.

Results: To test the locality features of the overlays, we
first built a Chord network and stored 4 replicas of 10
different zero-byte objects as in DHASH. Then, we read
the objects from each node in the system, one at a time,
and recorded the total read latency and the node on which
the replica was found. Next, we built a Tapestry network
in which we stored the replicas on the same nodes as in
the Chord test, and read the data as before. The time
to retrieve a replica in Chord is computed at the time to
discover a replica plus the ping time to that replica, minus
the 2.4 ms wrapping overhead we described earlier.

After performing the tests, we calculated for each op-
eration the distance to the closest replica from the query
source, and the ping time to the replica that was actually
discovered. A summary of the results is shown in Ta-
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ble 2. The first row shows the latency of the locate opera-
tion itself, while the second row shows the ping time from
the query source to the replica which was located. While
Chord finds a replica 7% faster than Tapestry, Tapestry
finds replicas which are 39% closer to the query source.
We can add a ping time to the Chord locate time as be-
fore to compute an estimated time to retrieve a zero-byte
replica; with Tapestry the retrieve time is equal to the
locate time. In this metric Tapestry is 81% faster than
Chord. For reference, the median ping time to the closest
available replica in each case was 28.8 ms, so Tapestry
underperforms an ideal algorithm by 36%.

Figure 6 graphs a value we termlocation stretch—the
distance to the discovered replica divided by the distance
to the closest available one. Location stretch is a measure
of thequalityof location; it shows the degree to which an
overlay finds close replicas when they are available.

Discussion: We first observe that neither overlay per-
forms well when the query source is within 5 ms of the
closest replica; we believe that other techniques are nec-
essary to achieve high performance in this range [11].

Next, we can see from Figure 6 that Tapestry sig-
nificantly outperforms Chord when the closest available
replica is within 5–15 ms of the query source. Referring
back to Figure 3, a replica in this range generally sees
high throughput to the query source as well, further in-
creasing the benefits of locality.

We note finally that although Chord is not designed to
find replicas according to locality, it could be extended to
achieve low location stretch by finding all available repli-
cas and then choosing the one with the lowest ping time.
The CFS paper seems to imply that their implementation
does something of this sort. Finding the latency to each
replica would take time, but in some cases it might be
justified. For example, if aserviceis being located (as
in I� [14]), rather than a replica, if the number of repli-
cas is very small, or if the replica is for a very large file,
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the location time may be dwarfed by the remainder of the
operation. Further study is needed to determine the per-
formance of such a scheme relative to Tapestry, and we
plan to test the CFS implementation in our future work.

5 Conclusions and Future Work
One can observe structured peer-to-peer overlay de-

signs from several angles: simplicity, robustness, effi-
ciency, and/or performance. In this work we have focused
on the latter, primarily because it is the easiest to measure,
when the implementations of some of these algorithms
are still in the early stages. Moreover, regardless of which
of these features one studies, one can take an algorithmic
approach, as in [10], or an application-level approach as
we have taken. We view these two as complementary: at
the same time that it is necessary for overlay builders to
be exploring their design space, it is important for appli-
cation writers to explore the differences between designs
and the ways they affect the systems built on them.

In this paper we presented two benchmarks,
find owner and locate, evaluated over two overlays,
Chord and Tapestry. We showed that for systems storing
and retrieving blocks only from their����� nodes,
find owner provides insight into the choice of overlay.
For systems that store entire files at the����� , there
is little performance difference between Tapestry and
Chord; for systems that store files as blocks, each on
their own����� however, there is a small performance
advantage to Tapestry. Depending on the application,
however, this performance advantage may not be suffi-
cient enough to justify the extra mechanism. Moreover,
at least some of the latency advantage seen by Tapestry
is due to its recursive—as opposed to iterative—routing
style. In our future work, we plan to also study a
recursive implementation of Chord so as to study each of
these differences separately.

Our second benchmark,locate, showed that there is
still work to be done on improving the ability of overlays
to locate nearby replicas when they exist. We hope this
result motivates the designers of these algorithms to fur-
ther improve them; the correlation of throughput and ping
times shown in Figure 3 indicate that there are significant
performance gains available if they do.

Our ongoing work in the short term is to extend our
benchmarks to other overlay implementations, and to
track the increasing size of PlanetLab with more mea-
surements. However, we believe we have only scratched
the surface of the set of interesting and important bench-
marks. We have not yet examined (for example) the cost
of a new node joining a network, or the cost of one leav-
ing. Neither have we examined the cost of a high rate
of node turnover on a network, as highlighted by oth-
ers [7, 12]. Finally, we have not analyzed the behavior of
these overlays during node failure or maliciousness. The

design of good application-driven benchmarks for such
cases is a rich topic for future work. Nevertheless, we
hope our existing work will help application designers
to better understand the tradeoffs in choosing an overlay,
and that it will motivate further design and implementa-
tion improvements by the networks’ designers.
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