
Dexferizer: A service for data transfer optimization
Ercan Ucan and Timothy Roscoe

Systems Group, ETH Zurich

Abstract—
We present an approach to optimizing the transfer of data

objects within a user’s collection of computers and personal
devices, subject to a variety of user-defined quality metrics
such as cost, power consumption, and latency. By abstracting
object transfer as a high-level service, and employing declarative
networking techniques to cast object transfer as a constrained
optimization problem, we show how to transparently exploit
techniques as diverse as swarming and multi-hop transfer
through virtual machines. Using a data replication system as
a driving application, we demonstrate that our approach can
easily accommodate flexible policies not easily implemented with
existing solutions, and can thereby result in savings in time,
power, bandwidth, or other costs.

I. Introduction

This paper presents an approach to optimizing the transfer of
data objects within a user’s collection of computation devices,
subject to a variety of user-defined quality metrics such as
cost, power consumption, and latency. We use techniques from
declarative networking together with application-defined poli-
cies to select appropriate transfer mechanisms and schedules.

Our goal is to evaluate the extent to which intelligent policy-
based routing decisions, combined with a choice of different
transport mechanisms, can outperform simple approaches such
as centralized, cloud-based storage for a user’s personal data.
We are not the first group to propose a decentralized ensemble
of personal devices (both physical and virtual) as an alternative
to entrusting one’s data to a large application provider; our
focus here is on how to best use what connectivity exists
between a user’s computing hardware to manage their data.

In our target scenario, a user runs a personal replication
system (along the lines of Cimbiosys [1] or Perspective [2]
on a small (about 10 nodes) collection of devices such as
phones, tablets, laptops, home PCs, and virtual machines
and associated storage rented from cloud providers such as
Amazon. The user generates new data items, by taking photos
and videos, downloading music and documents.

The challenge is to transfer these objects between devices,
satisfying user requirements for replication, availability, and
privacy, while optimizing other user objectives such as latency,
power consumption, and bandwidth cost for expensive links.
Items in such an ensemble can vary in size from a few
kilobytes up to a few gigabytes, and these items have varying
synchronization and replication priorities. The problem is
complicated by the limited resources on some nodes (such
as phones), and the dynamic nature of connectivity.

In this paper, we present Dexferizer, a declarative transfer
optimization service. Dexferizer employs a declarative ap-

proach whereby high-level requests are made on a transfer
service, which schedules data transmission and late-binds the
mechanism used for transferring an object, the paths taken by
the data through the network, and the origin nodes of the data
itself.

Furthermore, clients of the system write transfer policies
in order to constrain how objects are transferred (such as
avoiding public links or intermediate nodes, or transferring
only at certain times). They also choose the metrics to be
optimized for in planning the transfer (such as monetary cost,
latency, etc.), and relative importance of particular object types
from a transfer perspective.

The contributions of the paper are as follows: Firstly, we
present declarative techniques to represent and reason about
networks and optimize transfers using a constraint logic pro-
gramming (CLP) approach. Secondly, we present an expres-
sive and extensible grammar for declarative transfer policies.
Finally, we show potential for bandwidth, time, cost, and
power savings from late-binding transfers and incorporating
user-selected transfer policies into the optimization process.

In the next section, we present the background work we
build upon in our system, and then in Section III further
motivate the problem using concrete scenarios. In Section IV,
we present our model and general approach, and Section V
presents the design decisions in the implementation of our
research prototype. Our evaluation is present in Section VI,
and we conclude and discuss future work in Section VII.

II. Background

Over 50% of today’s Internet traffic comprises bulk data
transfers [3]. Therefore, many research efforts have been made
in order to increase the efficiency and speed of such transfers.
DOT [4] is such an approach, in which the applications
negotiate the transfer first, and the actual transfer is carried
out subsequently by a separate transfer service. This way
DOT enables the object transfers to be performed via different
transport mechanisms without the applications having to know
about the underlying details of the transport.

We build on DOT’s concept of abstracting data transfers
as single operations. However, in its current form, DOT does
not aim to optimize the transfers based on changing network
circumstances or user preferences, nor does it try to create an
optimal schedule to carry out a set of transfer requests.

In a personal data management environment such as the one
we target, a number of different resources can be considered
scarce. Bandwidth may be limited. Energy is a valuable re-
source in mobile and hand-held devices in a personal network

978-1-4577-0103-0/11/$26.00 c© 2011 IEEE

system. Furthermore, money is a constraining resource in
such systems - there are financial costs as well as efficiency
benefits from renting cloud storage or computation (including
use of virtual machines as intermediate routers for data object
transfers), and many mobile devices support transfer over
cheap, but intermittently available, WiFi connections as well
as expensive but more ubiquitous 3G data services.

Haggle [5], an architecture for seamless network connec-
tivity in mobile environments, has also influenced our ideas.
The key idea is to separate the application logic from the
underlying networking technology, and delegate network de-
cisions to a central resource manager running on each node
in the network. This manager can select the right just-in-
time bindings for the node’s network interfaces and protocols,
based on application-level semantics. Other projects have also
exploited late-binding of interfaces to provide flexibility to
applications. For instance, Horde [6] provides flexible net-
work striping across different network channels, based on
application-level policies. Wang et. al. [7] propose policy-
enabled handoff across heterogeneous wireless networks, with
a focus on limiting the need for user involvement in dynamic
environments. We see our work as more data transfer-centric,
and therefore complementary to these systems.

We also use ideas from late-binding naming approaches.
The Intentional Naming System (INS) [8] uses a language
based on a hierarchy of attributes and values for its names,
which allows provider or consumer nodes to describe the
services they provide or require. Applications benefit from
INS’s late binding support: the binding between the intentional
name and the node location is established when the message
is delivered rather than when the request is resolved.

The Unmanaged Internet Architecture (UIA) [9] is a dis-
tributed name system that aims to provide zero-configuration
connectivity among different mobile devices through “personal
names“. Users own a local namespace shared among all their
devices and available on every device, and assign personal
names to each of their devices as well as other users, and
access their friends’ namespaces. Once assigned, these names
remain persistently bound to their targets, regardless of their
network location. These and similar mechanisms could use our
work to benefit from reasoning about heterogeneous network
elements and connectivity element.

Our work in this paper can also be viewed as an instance of
cross-layer visibility [10]. The limited visibility across layers
in a networked system hinders network management tasks,
failure diagnosis, and ultimately the reliability of the net-
work [11] (similar observations have motivated architectural
work like Plutarch [12] and the Metanet [13]).

A rather different point in the design space is Mobile Ad-
Hoc Networks (MANETs). MANET routing protocols [14]–
[16] are decentralized and are designed to quickly react to
device and link failures. Handling heterogeneity has not been
a primary focus of MANET research, but we believe our
approach can be extended to MANETs. Moreover, MANET
protocols could also be expressed declaratively in our system,
as with other routing approaches.

Finally, DTN [17] proposes a network architecture for chal-
lenged environments, and an API based on possibly-unreliable
asynchronous message forwarding, with limited expectations
of end-to-end connectivity and node resources.

III. Problem description

In this section we present a series of concrete scenarios
demonstrating potential downsides of a naive implementation
of a partial replication and file synchronization system that
runs on a personal device ensemble.

A. Money is a scarce resource

Resources like metered 3G/2G data connections or virtual
machines rented from cloud providers can incur significant
monetary cost, which depends on usage.

For example, Swisscom currently offers [18] a 3G data
plan at a monthly subscription rate of 45 CHF which has
a data transfer cap at 250 MB, and charges 0.10 CHF per
MB thereafter. Pricing on this plan for international roaming
depends on where the user is connecting from. In Western
Europe, a 24-hour slot costs 7 CHF with a cap of 5 MB. In
Eastern Europe, a 24-hour slot costs 14 CHF with a 5 MB
cap. For the rest of the world, each 30KB chunk of data costs
0.30 CHF [19]. As the numbers suggest, data transfer on 3G
connections can become quite complicated and costly.

Consider a user taking photographs with the phone of about
700KB each, and suppose the default replication policy copies
the photos to at least 3 other machines in the user’s ensemble.
A naive replication mechanism using 3G will transfer 2.1
MB to replicate one photo. This alone will exhaust the user’s
domestic bandwidth cap after 119 photos, and further pictures
will cost 0.21 CHF each to replicate. At 5 pictures a day (150
a month), this leads to a monthly bill of 51.5 CHF only with
photo transfers.

Of course, the user can turn off the synchronization system
until they get home, and then transfer the photos via USB or
WiFi, at substantial saving, but this prevents the immediate
replication of other objects (such as important documents or
critically important pictures). Synchronization systems like
Dropbox [20] do not currently provide any way to prioritize
replication by object type or attributes. Ideally, the user should
maximize use of the 3G transfer without incurring extra cost,
replicating the most important items first.

B. Time is a scarce resource

Consider a hypothetical scenario in the context of data
replication where a user’s home server crashes. The server
contains a large number of replicas of items like photos and
music files. Figure 1 shows the nodes in the user’s replication
system, and the network topology at the time of the crash. The
replication system triggers an alert and decides to replicate
data currently stored on the Desktop PC and the phone onto
two more nodes: Amazon EC2 and GoGrid virtual machines.
A naive approach can overload a single node or a single link
for transferring data items to different targets, even though
the items can be fetched from other nodes in the system as

well. For example, the user may experience long transfer times
(during which data durability is compromised) if the naive
system decides that all the data items to replicate should be
copied to EC2 and GoGrid from the phone.

GoGrid

EC2

Desktop Phone

Homeserver

Office PC

Fig. 1. Example transfer scenario in case of a home server crash.

C. Energy is a scarce resource

Energy is widely recognized as a scarce resource in hand-
held devices. We compiled the information shown in Table I
from different usage scenarios presented in [21]. The table
shows the power consumption (actually, current draw) of
the Nokia N900 phone in various states, obtained using the
onboard battery monitor. A ‘T’ in the ‘Type’ column means
the data is the total energy consumption of the whole device,
and a ‘+’ means the data is additional energy consumed only
by the device component.

An N900 on a 3G connection sending a file at 150 kbit/s
draws 375 mA, and when receiving at 200 kbit/s draws 275
mA. This is more power than playing an MP3, activating the
camera and showing a preview image, or even vibrating the
phone continuously.

Device State Current Type
3G connection sending a file at 150 kbit/s 375 mA T

3G connection receiving at 200 kbit/s 275 mA T
3G connected, good signal, no data activity 8 mA +

2G connected, good signal, no data activity 5 mA +

Media player playing an MP3, one step above mute 110 mA T
Camera active, showing preview, back-light off 210 mA T

Vibration at max level 100 mA +

TABLE I
Nokia N900 hardware power consumption data

It is clear that replicating data to or from a phone using a
3G connection will cost a lot of energy. Such devices can often
use other connections (e.g. USB) that consume less power if
they are available, and transfers of some (but not all) items
can be delayed if it is known that these connections will be
available later. Moreover, multicasting from such a device can
significantly save energy.

IV. Approach

We now describe the problem in more detail and present
our solution framework. Our problem representation consists
of three parts: a network model, a model for user-specified
transfer policies, and a model to express conditions on the
optimal transfer schedule and mechanism. As described in
Section V below, our representation is encoded using Con-
straint Logic Programming and, in particular, the ECLiPSe

CLP engine based on Prolog.

A. Network Model

We represent the network as a set of links. These are
not necessarily physical links, but represent the connectivity
between pairs of nodes in the user’s ensemble of devices. In
addition, onto these links we map a set of transfer mechanisms.

1) Link quality information: Network links in our model
are assumed to run over IP, and have the following properties:
• type : Type of a link (USB, 3G, Ethernet, etc.)
• latency : Ping latency between the end-points.
• bandwidth: Bandwidth estimation of the link.
• load : Current link load, estimated on a set of increasing

timescales from seconds to hours.
• cost : Monetary cost of using the link. In practice, this

is often not a scalar value but a function of volume and
time derived from a pricing model.

• power consumption : Energy cost of using this link, again
as a function of time and volume.

The precise representation of a link in Dexferizer is shown
later in this section. Connectivity information is monitored
and updated continuously and is used when making routing
decisions.

2) Transfer mechanisms: Dexferizer can execute a transfer
request using a variety of models, classified as follows:
• point-to-point : Transfer from a specific source to one

destination node.
• source-agnostic point-to-point : Transfer from any possi-

ble source to one destination node.
• swarming : BitTorrent-like transfer mechanism where

parts/chunks of a file can be gathered from multiple nodes
via multiple links at the same time to a sink node.

• multicast : Transfer employing an application-level mul-
ticast tree.

Our goal in Dexferizer is to support all these different
mechanisms, and select the optimal one based on network and
system state, transparently to the application.

B. Transfer Policies

We also need a representation for transfer policies. We first
describe some example transfer policy scenarios informally in
English to illustrate a range of transfer policies, and then show
how these are represented formally in Dexferizer as Prolog
inference rules.

Our example scenarios are:
• Constraints on the media type, e.g. “never copy any of

my video files over a 3G connection.”

• Constraints on single item size, e.g. “never copy files
bigger than 50MB over 3G.”

• Time-based transfer size constraints, e.g. “don’t copy
more than 10MB per day over 3G.”

• Item based prioritization, e.g. “always synchronize my
to-do list first.”

• Privacy constraints, e.g. “never synchronize my private
photos through cloud resources.”

• Link priority, e.g. “always prefer USB or Ethernet to
Bluetooth or WiFi.”

We express such policies in Dexferizer using CLP, and
exploit Prolog predicates to abstract away from specific entities
(items, links, nodes) in the system. We present some examples
which illustrate how we can aggregate policies based on simple
rules, starting with two predicates that classify files based on
media type.

An object is a picture if it is of type JPEG or of type PNG,
and is a video if it is of type MPEG or AVI:
picture_item(ItemID) :-

item{itemid:ItemID, type:’JPEG’};
item{itemid:ItemID, type:’PNG’}.

video_item(ItemID) :-
item{itemid:ItemID, type:’MPEG’};
item{itemid:ItemID, type:’AVI’}.

We also use a convenient predicate to refer to “any device”:
any_device(ResID) :- device{resid:ResID}.

All the data the system has about items, devices, and links
are stored as Prolog facts. The next example shows how a
picture called ‘bosphorus.jpeg’, created on 19 January 2011,
and tagged “public” (i.e. not private) is represented:
item(photos/bosphorus.jpeg, ’JPEG’, 1295448700, public,...).

Below we first show a phone called nokiaN900, which is
mobile and owned by the user (as opposed to a rented virtual
machine), and then a link in the network showing that the
phone has an active 3G wireless connection to a desktop, with
a latency of about 178 milliseconds; the bandwidth of the link
is 150 kbit/s, and the current draw is 375mA:
device(nokiaN900, mobile, phone, owned,...).
link(’nokiaN900’,’desktop’, ’3g’, 178.742752, 150, 375, ...).

Transfer policies can now build on these twin concepts of
facts and predicates about both devices and items. A transfer
policy has the form:
xfer_policy(IP, SrcP, DstP, TR, LP).

IP corresponds to a list of item predicates, SrcP and DstP
correspond to lists of device predicates. TR is the transfer
relation which allows or disallows the transfer. LP is a list
of link predicates. For example:
xfer_policy([any_item], [phone_device], [any_device],

[xfernone], [any_link]).

This expresses the policy: “Do not use a phone as a transfer
source while replicating items”.

The next declaration expresses the policy “Never copy any
of my video files over a 3G connection”:

xfer_policy([video_item], [any_device], [any_device],
[xfernone], [3g_link]).

Our optimization framework also allows prioritization of
transfer requests. This can be done at the granularity of item
predicates. Transfer prioritizations have the following form:

xfer_priority([IPList, IPList, IPList, ...]).

As with transfer policies, IPList is a list of item predicates,
and the predicates inside an IPList are treated as conjunctions.
xfer_priority fact is a list of IPLists, and the ordering among
these lists specifies the transfer priorities of corresponding
items. For example:

xfer_priority([[doc_item, private_item], [picture_item],
[video_item]]).

This priority policy says that any document item tagged by
the user as “private” should be treated with the highest priority
in a transfer situation. Photo items are of the second highest
priority, followed by the video items. Transfer of other items
in the system will follow after these three item groups.

C. Formulating the optimization problem

We cast the task of providing data transfer as an optimiza-
tion problem. When a transfer service is given a series of
transfer requests to be performed, often there are multiple
end-points (source, destination), paths, and mechanisms which
could carry out these transfers in the network.

Basic
CLP

Optimization

Transfer
Policies

Transfer
Priorities

Time
Schedule

Fig. 2. High-level architecture of the Dexferizer

Figure 2 shows the logical structure of our problem for-
mulation as a constraint logic programming optimization. In
a nutshell, the basic optimization process examines possible
transfer scenarios, decides how ‘good’ they are based on a cost
or utility calculation mechanism, and selects the best possible
solution. Transfer policies, transfer priorities and other types of
declarative information (such as time schedules for transfers)
are also incorporated into the optimization process, acting
as constraints on the search space. In the following two
sections we describe how we incorporate the potential transfer
endpoints and routing information into the optimizer.

1) Incorporation of transfer endpoints information: We
represent a transfer request as 3 two-dimensional matrices.
Figure 3 shows an example: the columns of the matrices

correspond to devices, and the rows represent data items in
the system. Figure 3a is the source matrix and represents
the current view of the replication system. Figure 3b shows
the destination matrix representing the target configuration to
be reached by the replication system. Figure 3c shows the
difference matrix and is derived from the first two. It represents
the actions to be performed in order to reach the desired state
of the replication system.

item X 1 1

item X 11

item X 1 11 1

Source matrix Destination matrix

Difference matrix

 a b c d e a b c d e

 a b c d e

(a) (b)

(c)

Fig. 3. Source, destination and difference matrices representing a request

As shown in Figure 3, item X has two potential sources
(a and c), and two destinations (b and d). Potential transfer
configurations can be written as {(S 1, b), (S 2, d)} where S 1
and S 2 can be any non-empty subset of the {a, c}. S 1 and S 2
can be directly translated into Prolog variables.

Figure 3 depicts the case for a single file transfer. However,
in real applications, the task of optimization should consider
multiple transfer requests belonging to multiple data items at
the same time. Therefore, in reality, the optimizer deals with a
3 dimensional matrix, which is a combination of 2 dimensional
difference matrices for all the items to be transferred.

Treating the problem as an optimization requires a cost
metric (or, equivalently, a utility metric) to compare potential
solution scenarios. A cost function weighs potential transfer
configurations and says how much a particular solution ‘costs’
the user, whereas a utility function says how useful a particular
solution scenario is for the user. In our approach, depending
on the desired criteria, the optimizer can be fed either type of
function and told to minimize cost or maximize utility.

As an initial representation of a cost or a utility function,
we use a 2-dimensional matrix where the rows represent
the destination and the columns represent the source of a
transfer. The value of element [x, y] of the matrix denotes
the cost or utility of performing a transfer from a source
node y to a destination node x. The matrix can be populated
based on different optimization criteria. One advantage of this
model is the ability to flexibly plug custom cost and utility
calculation schemes into the framework. Here we describe two

potential cost and utility functions that can be plugged into the
formulation as the criteria of optimization.

1) Network latency as cost: One potential criteria for cost
can be the network latency among the nodes between
which the transfers are to be carried out.

2) Bandwidth as utility / Transfer time as cost: Band-
with utilization can be a criteria to maximize. This
approach can also be represented as a cost criteria where
the cost is the completion time of the issued transfer
requests.

3) Money as cost: Another alternative for a cost criteria
can be money, for example using pricing models for 3G
connections and rented cloud virtual machines.

4) Power consumption as cost: Another optimization
criteria can be the power consumption as it is an
important concern for mobile and hand-held devices.

2) Incorporating routing information: The knowledge
about and enumeration over the potential transfer endpoints
alone is not always sufficient for optimization. There are
scenarios in which the solution found by the optimizer would
be sub-optimal; an example is illustrated in Figure 4. In this
scenario, a file residing on EC2 and GoGrid nodes needs to
be transferred onto the phone. The phone is connected to EC2
and GoGrid over a slow 3G link, and to the desktop via a USB
cable. The desktop PC is connected to EC2 and GoGrid nodes
over a fast internet connection. Here, looking at the bandwidth
values the links provide, the optimal transfer situation would
be that the file gets copied in parallel via the Desktop PC from
EC2 and GoGrid machines over to the phone.

USB

GoGridEC2

Desktop Phone

3G

3G

0.3 MB/s

0.3 MB/s

4.2 MB/s

1.
0

M
B

/s

2.
1

M
B/s

Fig. 4. A use case for supporting the integration of routing information.

This scenario demonstrates two dimensions of the problem
space. The first dimension is the end points involved in the
transfer of an object. The second dimension involves the
possible paths the transfers can be carried out over, once
the sources and destinations are determined. Considering only
the potential transfer endpoints cannot completely capture the
whole optimization space.

We capture the second dimension by adding reasoning about
path and routing information into the optimization framework.
The optimizer contains flexible and tunable, declarative routing

algorithms that run using the existing declarative link and
device information in the system. The optimizer can generate
multi-hop routes for the transfers based on one of the various
metrics such as latency, bandwidth, or monetary cost that it
has been tuned for.

V. Implementation

The client application for Dexferizer is Anzere [22], a
personal data storage and replication system implemented
mostly in Python, currently containing more than 32,000 lines
of code. One of the components of Anzere is the overlay net-
work. This module contains network sensors that continuously
monitor the network, link and device status, and generate up-
to-date declarative system information regarding this network
state. Similarly, the storage module of the replication system
contains storage sensors that monitor the status of the data
items in the system and generate declarative information about
them.

Transfer scheduling and optimization code of Dexferizer is
implemented entirely in ECLiPSe constraint logic program-
ming language, a dialect of Prolog with constraint program-
ming extensions. In the current design, the optimization code
runs centrally on one of the devices in the ensemble. This
device maintains complete metadata of the items, devices and
links in its knowledge base and acts as a coordinator of transfer
requests. The search routine used by the current optimizer
is relatively naive: we use the minimize function inside the
branch_and_bound library provided by the ECLiPSe CLP
solver.

Figure 5 illustrates the logical stratification of declarative
information and mechanisms in Dexferizer. At the base of the

Link data Device (meta)data Item (meta)data

Item predicate Device predicate

Transfer policies

APP

POLICIES

PREDICATES

Priority policies

Fig. 5. Declarative transfer service abstraction layers.

declarative information stack, there is the network and item
related data as Prolog facts. One layer above, there are Prolog
predicates written by developers. These are used to extract
information about various properties of the data from the layer
below. With the use of such predicates, the items, devices
and the network resources can be reasoned about using their
properties at a more abstract level instead of hard-coded names
that they are attached to. Above this are transfer and priority
policies, some of which will be written by users but most of
which we anticipate being provided by developers in the form
of a library.

Another key difference between traditional approaches and
the way Dexferizer models the problem is the design of
the communication scheme between the application and the
transfer service itself. In Dexferizer, these two modules com-
municate over a declarative model. The transfer requests are
represented in a fashion similar to a database, via the difference
matrix. The database is examined by Dexferizer and the
schedules of the transfers are generated after the incorporation
of user specified transfer policies, network and cost models.

VI. Evaluation

In this section we present initial results on the prototype
implementation of Dexferizer. Some of the figures we present
in this section, while insightful, are still at an illustrative stage
regarding the approach and the idea, rather than being ex-
haustive and comprehensive. We focus on the behavior of the
optimizer and its tunability via different transfer policies. We
also present initial numbers on how the optimizer scales with
different numbers of items and in different transfer scenarios
followed by results examining the resource consumption of the
optimizer. We argue that our results imply significant potential
savings on cost, time and power usage.

Unless otherwise noted, our experiment and simulation
setup assumes a device ensemble consisting of 7 devices
(desktop PC, office PC, laptop, smartphone, homeserver and 2
rented cloud virtual machines). We use different workloads for
different experiments and we describe these in as necessary.

A. Comparison of optimized and naive approaches

We first compare the behavior of Dexferizer with that of
naive approaches.

1) Baseline: optimizer set for maximum overall bandwidth
utilization: In this baseline experiment, we compare the utility
of the solutions generated using two different approaches.
In the case of an unoptimized default behavior, the source
node of a transfer is selected as the first node encountered
in a scan over the nodes in the network, whereas the transfer
optimizer considers different possible transfer scenarios and
mechanisms, and optimizes the solution to obtain the highest
utility value possible. We used a synthetic workload for this
baseline experiment. Each item in the data set has up to 2
initial copies randomly distributed over all the devices in the
ensemble. One new replica for each item is going to be created
on one of the other devices (also randomly chosen) in the
system.

Table II shows the utility matrix used in Figure 6. The
columns are the potential devices (sources) that a file can
be copied from. The rows are the potential destination (sink)
devices for a transfer. The matrix cell (x, y) shows the utility
of performing a transfer from the source node y to the sink
node x. The numbers inside the cells of the matrix can be
thought of as representative bandwidth (in megabytes/s) values
in between devices.

We emphasize that these values are not completely real-
istic, but they currently act as representative placeholders to
demonstrate the use of the utility matrix. In the actual system,

 0

 10

 20

 30

 40

 50

 60

 70

 4 6 8 10 12 14 16 18 20

U
til

ity
 V

al
ue

Number of data items

Dexferizer
Naive replication behavior

Fig. 6. Utility comparison between optimized versus naive behavior.

the bandwidth is monitored continuously and the optimizer
works with up to date information rather than the static and
independent estimated bandwidth shown in this table. The
aim of the optimizer is to maximize the utility, the overall
bandwidth used in the network. It schedules the transfers to
be carried out in a BitTorrent fashion wherever possible as
this is the configuration that maximizes the utility. The naive
approach does not show high utility since it always carries
out the transfers from one node. This plot shows how the
optimizer works with a utility function. The resulting meaning
and the benefit of the higher utility to the user of the system
is demonstrated in the next experiment.

- laptop office home desktop ec2 gogrid phone
laptop - 0.5 3 3 1.5 2 0.3
office 0.5 - 1 1.1 2 3 0.3
home 2.1 1 - 3 2 1.6 0.3

desktop 3 1.4 3 - 1 3 0.2
ec2 1.6 3 2 1 - 2 0.3

gogrid 2 3 1.7 3 1.9 - 0.3
phone 0.3 0.3 0.2 0.3 0.3 0.3 -

TABLE II
UtilityMatrix for the experiment of Figure 6

2) Multi-hop transfer scenario: In this experiment we show
the results of a transfer simulation showcasing the effect of
multi-hop transfer schedules aimed at high bandwidth utiliza-
tion generated by Dexferizer. We use the device ensemble and
topology shown in Figure 4.

We employ a synthetic workload for this experiment. The
total number of items to be replicated is 155 and the sizes
of the items vary between 4 and 25 MB. Initially, there
are either 1 or 2 copies of each item, and the locations are
chosen randomly. We create 1 new replica for each item, and
the target location is also selected randomly. The optimizer
routing algorithm is configured to favor the higher bandwidth
paths whenever possible. Cells of the utility matrix are set to
bandwidth values generated by the routing algorithm. Figure 7
illustrates the comparison of two approaches.

Transfer durations for many of the items get smaller with the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f t
ot

al
 it

em
s

Transfer time(s)

Naive approach
Dexferizer

Fig. 7. Comparison of transfer times using Dexferizer and a naive approach.

optimized schedule. Transfer schedules generated by Dexfer-
izer employ BitTorrent style downloads whenever possible and
the routes generated are aimed at using the highest bandwidth
paths between nodes. The naive approach always performs
the transfer from the first node it finds having the item, and
by default always uses the one-hop links between source and
destination devices.

B. Tuning the optimizer with policies

The results we present in this section showcase the tunabil-
ity of Dexferizer using user-specified transfer policies.

1) A transfer policy in action: In this experiment, we
insert a transfer policy that is mentioned in section IV into
Dexferizer. The policy says “Do not use a phone as a transfer
source to replicate items”, and looks like:

xfer_policy([any_item], [phone_device], [any_device],
[xfernone], [any_link]).

For this experiment, we use a generated workload. Each
item in the data set has up to 3 initial copies that are randomly
distributed over all the devices in the ensemble. Up to 3 new
replicas of each item are going to be created on the rest of the
devices (also randomly chosen). Figure 8 illustrates the effect
of the policy on the generated transfer schedule. Activation
of the policy dramatically reduces the amount of data traffic
originating from the phone. Without the policy, Dexferizer
maximizes the achievable bandwidth without considering the
cost or energy constraint. Note that the number of times the
phone is involved is still not 0 even when the policy is active.
This is because some of the data items had only one copy
at the time the request was issued and that single copy was
located on the phone.

2) A priority policy in action: In this experiment we
observe the effect of inserting item prioritization policies into
Dexferizer. We compare the two different transfer schedules
generated by the optimizer. The prioritization policy we insert
into the optimizer is the following Prolog fact:

xfer_priority([[picture_item, private_item], [video_item]]).

which says that the photo items that are tagged as private

 0

 50

 100

 150

 200

50 100 250 500 750

of

 ti
m

es
 p

ho
ne

 is
 in

vo
lv

ed

Number of items to replicate

with policy
no policy

Fig. 8. Transfer policy in action.

by the user should be treated with the highest priority in a
transfer situation. The video items are of the second highest
priority and the transfer of the rest of the items in the system
will follow after these two. Figure 9 shows two CDFs that
belong to transfers of all the photo items. The data set in this
experiment has 1000 data items consisting of photos, mp3s,
and video items. One of the CDFs belongs to the transfer
schedule generated when there is no active priority policy in
the system and the other one is the CDF in the presence of
the policy.

The figure shows that the set of private photos (about half
of the total photo collection) get scheduled earlier. As also
depicted in the figure, the CDF with the priority policy stays
constant for a certain period. This is due to the fact that the
video items are scheduled for that particular period of time,
as this was specified by the policy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

S
ch

ed
ul

ed
 p

ho
to

 it
em

 tr
an

sf
er

s

All data transfers

Photo transfers, no priority policy
Photo transfers with priority policy

Fig. 9. Priority policy in action.

C. Optimizer scalability and resource usage

The next set of experiments are aimed to observe the
limitations and resource consumption of our current imple-
mentation of Dexferizer. In these experiments, the CLP solver
was running on a laptop that has a 2.5 GHz Intel Core 2 Duo
processor, and 2 GB of memory.

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

S
ol

ut
io

n
Ti

m
e(

s)

Number of data items

Optimization with Data set I
Optimization with Data set II

Fig. 10. Performance figure for the vanilla approach.

1) Number of requests vs. solution time: Figure 10 shows
the scaling of the basic CLP optimization with regard to
number of items that need to be replicated. The data set labeled
with I in this experiment is the same data set that is used in the
experiment of Figure 8. Data set II is generated in a similar
way. The difference in data set II is that the numbers of initial
copies and new replicas were both set to 2. As depicted by the
figure, the numbers of initial copies and new replicas changes
the search space significantly, and therefore largely influences
the solving time. We envision that, in most of the ordinary
usage scenarios (except for disaster scenarios where several
thousands of items might need to be moved around at the
same time), the optimizer does not have to scale up to very
many items. In practice, most of the time the system needs to
deal with a few items at a time, e.g., after taking 10 photos.
If scalability does become a problem, we then plan to address
the issue by grouping the items into equivalence classes which
can be derived by looking at the active item predicates that
exist in the system.

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

ck
 s

iz
e

(M
B

)

Number of data items

Memory usage upper bound
Stack peak
Heap used

Fig. 11. CLP solver memory consumption.

2) Memory consumption: One last aspect we examine
about the solver in the context of this paper is the resource
consumption of the CLP solver. Figure 11 illustrates the

solver’s upper-bound memory consumption. By upper-bound
memory consumption, we mean the total heap space and the
sum of four different stack peaks (storing Prolog variables,
backtracking information, checkpoints, etc). The peak value
gives the maximum allocated during a session. As the figure
shows, the memory consumption of the optimizer seems to
scale better as compared to the solving time for the same data
set.

VII. Conclusion and FutureWork

In this paper, we presented an approach to optimizing the
transfer of data objects within a user’s collection of devices.
We demonstrated that our approach can accommodate flexible
user specified transfer policies that are not easily implemented
with existing solutions. Moreover, we conclude that our ap-
proach shows significant potential for savings in time, power,
bandwidth and other costs.

In terms of usability, Dexferizer is intended for both the
users and developers, with being more geared towards the
latter at the moment. For improving usability of the system
from an end-user’s perspective, we are planning to develop
a graphical user interface (GUI) that can help users specify
their transfer policies in a more intuitive way. This GUI then
can translate user’s policies into pure Prolog facts. We are
also interested in finding out potential set of commonly used
libraries of transfer policies that can be served to the users as
off-the-shelf components.

As part of the future work, we are considering various
extensions to our framework. We think that our declarative
optimization framework can incorporate more information
that can help improve the quality of transfer optimization
even further. For example, each paid service such as a 3G
connection or a rented cloud virtual machine has its own
pricing model. We would like to be able to integrate various
pricing models into declarative framework and reason about
this data in an intelligent way.

We also think that in order to further optimize and support
features such as deadlines on transfer requests, we can include
personal usage profiles and daily connectivity information into
the optimization process. This can be done with a three-
dimensional matrix having the list of devices on the x-axis,
one complete day on a 1-hour granularity (hence the 24 rows)
on the y-axis, and the type of different links the devices can
have on the z-axis. We think that this feature can enhance the
quality of optimization and late-binding we can provide.

As a longer term future work, we are planning to explore
the problem in the context of data centers and larger networks.
We want to examine how our formulation of the problem fits
with the conditions of data center networks which have differ-
ent networking characteristics than personal data replication
systems.

References

[1] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-
Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat, “Cimbiosys: a
platform for content-based partial replication,” in Proceedings of the 6th

USENIX symposium on Networked systems design and implementation
(NSDI ’09), 2009, pp. 261–276.

[2] B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R. Ganger, “Perspec-
tive: semantic data management for the home,” in Proceedings of the
7th conference on File and storage technologies (FAST ’09), 2009, pp.
167–182.

[3] N. Azzouna and F. Guillemin, “Analysis of ADSL traffic on an IP back-
bone link,” in Proceedings of the 2003 IEEE Global Telecommunications
Conference. (GLOBECOM ’03), December 2003.

[4] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil, “An architecture
for Internet data transfer,” in Proceedings of the 3rd USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’06), May
2006.

[5] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot, A. Goel,
M. H. Lim, and E. Upton, “Haggle: seamless networking for mobile
applications,” in Proceedings of the 9th international conference on
Ubiquitous computing (UbiComp ’07). Springer-Verlag, 2007, pp. 391–
408.

[6] A. Qureshi and J. Guttag, “Horde: separating network striping policy
from mechanism,” in Proceedings of the 3rd international conference
on Mobile systems, applications, and services (MobiSys’05). ACM,
2005, pp. 121–134.

[7] H. J. Wang, R. H. Katz, and J. Giese, “Policy-enabled handoffs across
heterogeneous wireless networks,” in Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applications (WMCSA ’99).
IEEE Computer Society, 1999, pp. 51–60.

[8] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The de-
sign and implementation of an intentional naming system,” in 17th ACM
Symposium on Operating Systems Principles (SOSP ’99), Charleston,
SC, December 1999.

[9] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea, F. Kaashoek, and
R. Morris, “Persistent personal names for globally connected mobile
devices,” in Proceedings of the 7th symposium on Operating Systems
Design and Implementation (OSDI ’06). USENIX Association, 2006,
pp. 233–248.

[10] R. R. Kompella, A. Greenberg, J. Rexford, A. C. Snoeren, and J. Yates,
“Cross-layer Visibility as a Service,” in Proceedings of 4th Workshop
on Hot Topics in Networks (HotNets IV), 2005.

[11] E. A. Brewer, Y. H. Katz, Y. Chawathe, S. D. Gribble, T. Hodes,
G. Nguyen, M. Stemm, and T. Henderson, “A network architecture
for heterogeneous mobile computing,” IEEE Personal Communications,
vol. 5, pp. 8–24, 1998.

[12] J. Crowcroft, S. Hand, T. Roscoe, R. Mortier, and A. Warfield, “Plutarch:
An argument for network pluralism,” in Proceedings of the ACM
SIGCOMM Workshop on Future Directions in Network Architecture
(FDNA ’03), 2003, pp. 258–266.

[13] J. T. Wroclawski, “The Metanet. White Paper,” in Proceedings of
Workshop on Research Directions for the Next Generation Internet,
1997, White Paper.

[14] S. R. Das, C. E. Perkins, and E. M. Belding-Royer, “Performance Com-
parison of Two On-demand Routing Protocols for Ad Hoc Networks,” in
Proceedings of the 19th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM ’00)., March 2000, pp. 3–12.

[15] C. E. Perkins and E. M. Royer, “Ad-Hoc On-Demand Distance Vector
Routing (AODV),” in Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’99), February 1999, pp.
90–100.

[16] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” Internet RFCs, vol. RFC 3626, 2003.

[17] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications (SIGCOMM
’03). New York, NY, USA: ACM, 2003, pp. 27–34.

[18] “Swisscom tariffs for mobile internet,” http://www.swisscom.ch/res/
mobile/internet/index.htm?languageId=en&campID=md.

[19] “Swisscom standard tariff for data transmission abroad.” http://www.
swisscom.ch/res/mobile/international/data/index.htm.

[20] “Dropbox: Online backup, file synchronization and sharing software.”
http://www.dropbox.com.

[21] “Nokia N900 Hardware Power Consumption.” http://wiki.maemo.org/
N900_Hardware_Power_Consumption.

[22] “The Anzere personal storage system.” http://www.systems.ethz.ch/
research/projects/anzere.

