
Ready for Distribution?∗

Turning Modular into Distributed Applications with the R-OSGi Deployment Tool

Jan S. Rellermeyer Gustavo Alonso Timothy Roscoe
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

{rellermeyer, alonso, troscoe}@inf.ethz.ch

ABSTRACT
In this demonstration we show drag-and-drop distribution of
centralized, modular Java applications.
Our system is based on OSGi, an industry standard for
building Java applications out of modular units loosely con-
nected through services. Since OSGi is a centralized system,
we have elaborated a solution to seamlessly distribute OSGi
applications along the boundaries of services and thereby
turning arbitrary OSGi applications into distributed appli-
cations. In this demonstration, we present an Eclipse based
tool that takes the source code of an OSGi application as
input, produces a graph of its modules and module depen-
dencies, and allows the user to deploy the application across
a distributed system by dragging-and-dropping its constituent
modules on different machines. By defining constraints on
the distribution, the tool can also support advanced features
like load-balancing or redundancy of modules.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Modules, Packages; C.2.4 [Computer- Com-
munication Networks]: Distributed Systems—Distributed
Applications; K.6.m [Management of Computing and
Information Systems]: Miscellaneous

General Terms
Design, Management

Keywords
R-OSGi, OSGi, Deployment, Eclipse, Concierge

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Designing and developing distributed applications is still

a difficult task that involves in-depth knowledge of both
application semantics and networking issues. In contrast,
building modular applications is well understood and such
applications are easier to design. As we argue in [3], it is
possible to distribute an application by locating its con-
stituent modules on different machines. For this purpose,
we have developed R-OSGi, a middleware platform that im-
plements the OSGi standard in a distributed setting. The
key to R-OSGi is that it treats distribution transparently
and uses the natural boundaries between software modules
to establish the potential boundaries for distribution of the
application. R-OSGi masks all failures as connectivity fail-
ures across modules, thereby effectively making distribution
transparent to the developer. In this demonstration, we
present an Eclipse based deployment tool that allows to dis-
tribute an application by simply drag-and-drop of its mod-
ules. We further demonstrate the potential of the tool by
incorporating rich configuration options addressing require-
ments commonly encountered in distributed scenarios such
as redundancy for load balancing or failure-resilience.

2. BACKGROUND

2.1 OSGi
OSGi [1] recently became popular because it addresses a

major issue with Java: The lack of built-in support for de-
scribing and handling modules and their dependencies. In
OSGi, the modular units are called Bundles and are JAR
files with additional information in the manifest. Most im-
portantly, the manifest can explicitly declare which Java
packages of the Bundle are offered for export and which
packages provided by other bundles are required as imports,
thereby making dependencies between modules expicit. The
runtime infrastructure of OSGi (the Framework) can thereby
delegate between the classloaders of Bundles in a well-defined
manner.

OSGi allows inter-module dependencies to be specified
declaratively. Bundles define what to import but typically
not from where. While dependencies potentially limit the
flexibility of a modular design (since they pose constraints),
OSGi provides loose coupling of Bundles through services.
Bundles can register their implementation of a service in-
terface with a central service registry and other bundles can
retrieve the service implementation from the registry. Since
access to the service is restricted to its interface, clients of
the service only have to know the interface type and have no

knowledge of the service implementation. The OSGi frame-
work handles the consistency of package exports.

2.2 R-OSGi
Two features of OSGi have so far prevented it from be-

ing used as middleware for distributed applications: Firstly,
the central service registries of different peers are isolated
from each other. Secondly, since packages are allowed to
share code through package imports, a module import on
one machine must be resolvable even though the local Java
VM might only hold a subset of the application’s classes and
packages.

To address these limitations, we have developed R-OSGi
which runs on top of an arbitrary OSGi framework imple-
mentation as an ordinary service, but transparently handles
all issues related to distribution. Through a service discov-
ery protocol, R-OSGi extends the idea of the central service
registry to whole networks. By creating dynamic proxies
for services on-the-fly and registering these under the inter-
faces of the original service, R-OSGi transparently hides the
distributed nature of the deployment. With R-OSGI, we
can turn arbitrary service-oriented OSGi applications into
distributed applications without changing them. Finally,
R-OSGi turns network and node failures into module un-
load events, which OSGi applications already expect and
can gracefully handle.

3. DEMONSTRATION
We will demo a deployment tool (Figure 1) implemented

as an Eclipse plugin that takes existing OSGi applications
as input. Since service dependencies cannot be statically de-
termined from the bundles, the tool performs code analysis
to reason about which services are provided or consumed by
each bundle. The result is a visualization of the applica-
tion structure when it is executed as a conventional OSGi
application running on a single Java VM. Attendees of the
demonstration will then see how we turn this application
into a distributed one by simply dragging and dropping indi-
vidual OSGi services to different machines. We then deploy
the distributed application to the corresponding machines
and start it with a single click. Using our own OSGi R3
implementation Concierge [2], even small devices like PDAs
and Smartphones can participate in an R-OSGi deployment.
To demonstrate the advanced capabilities of the tool, during

Figure 1: R-OSGi Deployment Tool

the demo we will modify the configuration of the applica-
tion with just a few clicks and introduce load balancing for
a service.

The innovation in our approach is not only the capabilities
of the deployment tool, but also its ease of use. In order to
give attendees an impression of what is going on in the mid-
dleware, we will visualize and monitor the structure of the
deployment and all the messages exchanged in the depths of
the R-OSGi system.

4. SYSTEM SETUP
The demonstration setup consists of one notebook with

the application and the Eclipse-based deployment tool, plus
several other machines (Notebooks or PDAs) that will take
part in the deployment. In order to make the whole process
and the resulting distributed application more visible, the
notebook running the tool is connected to a projector.

We will provide all the hardware, including the projector
and a wireless access point to form a private subnet in which
the deployment operates.

5. PRESENTER

Jan S. Rellermeyer
Jan S. Rellermeyer has received his MSc in Computer Sci-
ence from ETH Zurich in 2006. He is currently doing a PhD
in the Information and Communication Systems Research
Group (IKS) at ETH. His fields of research are OSGi in dis-
tributed environments and fluid computing. The latter deals
with building collaborative, highly flexible applications for
future mobile and ubiquitous applications. Jan has worked
with OSGi for several years and pioneered the introduction
of support for cross-VM services in OSGi. The OSGi Al-
liance has shown interest in using his experience in upcom-
ing standards. Jan presented the core approach of R-OSGi
in a long-format talk at EclipseCon in 2007.

Contact Information
Jan S. Rellermeyer
ETH Zurich
Department of Computer Science
8092 Zurich, Switzerland
rellermeyer@inf.ethz.ch

6. REFERENCES
[1] Open Service Gateway Initiative.

http://www.osgi.org.

[2] J. S. Rellermeyer and G. Alonso. Concierge: A Service
Platform for Resource-Constrained Devices. In
Proceedings of the 2007 ACM EuroSys Conference,
2007.

[3] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi:
Distributed Applications Through Software
Modularization. In Submitted, 2007.

