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The trend towards system specialization is leading to a proliferation of accelerators, exposing interconnects as serious

bottlenecks, both in functionality and performance. As a result, several alternative approaches have been proposed which

promise to expand the coherence domain beyond homogeneous sockets to rack scale heterogeneous systems. In parallel, GPU

vendors have developed their own high bandwidth interconnects also aiming for heterogeneous coherence beyond the CPU.

This expansion of the coherency domain raises many questions that remain unanswered, in particular, how devices other

than CPUs will interact with the coherence protocol and whether applications can take advantage of these expanded domains.

As protocols such as CXL are still evolving, it is important to explore alternative designs that go beyond what the commercial

speciications dictate. For this purpose, we developed CCKit, an open-source, server-class toolkit comprising a complete

cache coherency stack on reconigurable accelerators. CCKit is more lexible than commercial products and its performance

is highly competitive with hardware-based implementations, thus enabling important and novel application use-cases for

expanded coherence domains. Experimental data from real workloads provide the ability to inluence and expand future

interconnects, protocols, and applications.
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General and reference→ Experimentation; ·Hardware→ Buses and high-speed links; Reconigurable logic applications.
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1 Introduction

There is increasing interest in extending cache coherence, long regarded as essential for parallel programming
on homogeneous multiprocessors, to other parts of a computer system and in opening up hardware coherence
protocols for other uses. The main trend driving this renewed interest in coherence protocols is the rise of
heterogeneous hardware in the form of Systems-on-Chip (SoCs), and accelerators such as GPUs, FPGAs, TPUs,
etc. Such a shift in hardware design is in turn driven by performance scaling [24, 39], parallel machine learning
workloads [30], and specialization [98]. When a computer is a collection of heterogeneous processing elements
of equal standing, the question arises as to how much of the system should be coherent.
The proliferation of accelerators has also driven innovation in the interconnects linking them to the CPU.

Because PCIe lacks the necessary features to support increasingly sophisticated and powerful accelerators,
proposals like CCIX [25], GenZ [42], and OpenCAPI [93] emerged. Many of these have converged into CXL [34],
whose family of standards has emerged as the front-runner in CPU-centered systems. However, there are other,
more specialized standards for GPUs [86] (NVIDIA NVLink [40, 65], AMD’s Ininity Fabric [10]) that ofer a
diferent set of features from CXL. Recent developments [101] suggest that interoperability between competing
protocols using sub- or supersets of features is on the horizon, but the details remain murky. Additionally, there
is an entire ecosystem of interconnects and protocols for RISC-V and embedded systems [11, 104]. Interestingly,
all these eforts provide cache coherence and/or coherent memory access in ways unavailable before. While
traditional coherence used proprietary interconnects between parts from a single vendor, it is now closer in spirit
to network protocols (see, e.g., [66]).
The generality and lexibility of these interconnects enable innovative architectural designs exploiting co-

herence, such as disaggregated memory [22] or crash consistency for persistent memory [12, 16]. Some even
argue that cache coherence protocols should be tailored to the application [71, 104, 116] rather than ofered as a
black box. However, this requires the tools and suiciently high-level interfaces to allow applications to interact
with the hardware cache protocol. Working with coherence protocols, even those designed with interoperability
in mind, is highly challenging. Real coherence protocols are complex, with hundreds of transient states and
many potential race conditions [73]. Implementing a coherent endpoint as part of an application is diicult and
time-consuming [18, 78]. Reusing an implementation is even harder, particularly when the protocol is being used
non-traditionally.
Simulation fares poorly in these scenarios: either the simulator is painfully slow, making it hard to derive

meaningful results in the presence of I/O and real-world interactions, or it achieves better performance by
simplifying the protocol, potentially losing critical, practical issues [18, 76, 86].
To address this, we present CCKit, an open-source, server-grade, modular, and lexible coherence protocol

design and implementation. We focus on FPGAs as their reconigurablity is ideal for exploring the design space
and meeting the performance requirements of low-level CPU interaction [48, 85]. Indeed, many proposals taking
advantage of coherent interconnects are FPGA-based [12, 22, 23, 60] and companies are already patenting use-cases
based on cache coherent FPGAs [20, 21]. FPGAs are also a standard component in the cloud (Microsoft [70, 81],
Amazon [6], Alibaba [28]), with novel applications e.g., acceleration of database engines [79, 114] that would
greatly beneit from using coherent FPGAs.
Prototyping with CCKit is fast and faithful: its irst implementation runs natively on a real hardware plat-

form [31], and includes a performant coherence implementation matching the speed of the CPU. CCKit is also
lexible: it exposes to applications much more about protocol events than emerging standards do. Crucially,
modiications are simpliied by abstracting most of the state machine complexity of the coherence protocol while
exposing enough low-level access to allow a wide range of use-cases. To ensure lexibility, CCKit is built as an
intermediate layer between the raw coherency messages delivered from the interconnect and the application logic
and ofers high level and well-deined interfaces, making it portable to future standards providing symmetric
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coherence such as CXL 3.0. CCKit is not intended to compete with commercial interconnects, but to provide a
vehicle to build symmetric cache coherent accelerators and applications before products are available. Moreover,
with a wide spectrum of design choices and architectures available, the lexibility and extendability allows for
proposing future interconnect standards by: (1) determining what is needed on the accelerator side to implement
cache coherency; (2) explore applications and software architectures that can take advantage of cache coherency;
and (3) identify performance and design pitfalls arising from coherence protocols that might not be suitable to
common use cases.
We show the performance and versatility of CCKit through micro-benchmarks and several acceleration use

cases. The former demonstrate that CCKit on an FPGA has performance comparable to a CPU, despite the lower
clock frequency on the FPGA. Our use cases explore (a) the implementation of a custom pre-fetcher on the
FPGA (doubling the read throughput from FPGA memory from 7.8 GiB/s to 17.4 GiB/s); (b) the maintenance of
database views with update propagation from base tables to an aggregated view (running at interconnect speed
of 19.5 GiB/s); and (c) synchronous RPC from CPU to Field Programmable Gate Array (FPGA) based on the CCKit
directory controller, outperforming both programmed I/O and DMA (null RPC �50 latency of 900 ns).
In this paper, we present the following contributions:

• CCKit: a fully open, modular, and symmetric coherence protocol design that provides a generalized interface
to applications

• An lexible programmable architecture for cache coherence on an FPGA
• A performant implementation of CCKit on a server-grade platform that allows for the development,
acceleration, and evaluation of complex enterprise workloads

• A toolchain to generate correct application-speciic protocols
• Evaluation of CCKit across several workloads: microbenchmarks, a custom memory prefetcher, main-
tainance of database views using coherence protocol, lockless coherent table updates, and a synchronous
CPU-FPGA RPC

The remainder of the paper is presented as follows: ğ2 presents the current ield of interconnects and coherence
protocols and the placement of CCKit in this context. In ğ3 we present the approach and high-level design of CCKit
and the interfaces. The implementation details are presented in ğ4 including techniques for obtaining CPU-like
performance on an FPGA. The microbenchmarks and application use cases are presented in ğ5. Additional related
work can be found in ğ6 before concluding in ğ7.

2 Background

In this section we provide background into types of coherent protocols (ğ2.1), the types of interconnects and
models of coherence in heterogeneous systems (ğ2.2) and the varied forms of coherence in Multiprocessor System-
on-chips (MPSoCs) This motivates the primary question posed by this research ś what models of coherence
are appropriate in modern large-scale heterogeneous systems? In order to answer this question, we must irst
determine what the design and interfaces (ğ3) and, by extension, implementation (ğ4) of CCKit will be.

2.1 Symmetric vs. asymmetric protocols

A crucial aspect in cache coherence protocols is who controls the protocol, with models of cache coherence
broadly falling into two categories: asymmetric and symmetric [74].
Asymmetric protocols preserve the host-device relationship between CPU and accelerator: both sides can

implement caching agents (and cache data), but only the CPU implements a home agent which tracks ownership
of cache lines. This simpliies accelerator implementation but limits scalability and lexibility. It also signiicantly
afects performance: to access local memory shared with the CPU, an accelerator must make a request to the CPU.
In this model, the accelerator’s data is, from the start, a copy and there is no notion of the accelerator ownership
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of data that the CPU might cache. Some of the asymmetric examples that are mentioned in Chapter 10 of [74] are
the CPU-GPU heterogeneous protocol with selective caching [3] or architectures with a global directory residing
on the CPU side and stitching together diferent CC protocols on CPU and GPU nodes.

Moreover, the FPGA loses control over an entire section of the coherence protocol. For example, applications
cannot issue messages that belong to the directory protocol such as the forward downgrade messages and
might be limited to load and store operations performed through the caching agent. Finally, the FPGA also loses
observability over the coherence protocol. For example, applications on the FPGA cannot observe any messages
that are issued by other coherence controllers to the home agent for its own memory. With the concurrency and
dynamism of coherence protocols, not being able to access the global view of the states of cache lines reduces the
guarantees that can be inferred by applications, making it diicult to design applications that can be proved to be
correct.
Symmetric protocols have home agents on both CPU and accelerator, as in a homogeneous NUMA system.

While more complex to implement, they provide seamless coherent integration between the CPU and accelerator.
Less obviously, they allow the accelerator to unconventionally participate in the protocol. Rather than simply
observing transactions on the CPU cache and being notiied by the CPU, the accelerator can actively generate its
own notiications and manage its own memory independently. In [74] under symmetric case fall the distributed
directory-based protocols covered in Chapter 8.

2.2 Accelerators and coherent interconnects

Until recently, accelerators like GPUs used a łhost-devicež computational model based on PCIe in which the host
CPU manages external accelerator resources. Data is oloaded in bulk for processing and the results copied back
to the host. This is the model used by CUDA [75], OpenCL [91], and modern accelerators such as TPUs [55]
and VCUs [83]. It arose in part from the lack of cache coherence between host and device, and favors highly
structured workloads that can be expressed as oloaded batches. This model implicitly assumes the accelerator
takes a copy of the input data, performs a task, and returns results without engaging in any complex exchange or
interaction with the CPU [77].

As accelerators have become more powerful (in some cases, many CPUs are needed to feed a single accelera-
tor [115]) PCIe standards have greatly increased bandwidth. However, the underlying principles of PCIe remained
unchanged, despite its limitations in terms of protocol and features, and the diverse proliferation of accelerators.
Intel HARPv2 [77] and IBM CAPI [92] were early attempts at better accelerator integration, coherently

connecting a server-class CPU and FPGA. HARPv2 used an asymmetric implementation of the symmetric QPI
protocol [33] (in contrast to other approaches available [102]), while CAPI used a PCIe Host Bridge and Coherent
Accelerator Processor Proxy on the CPU, and a service layer on the FPGA. In both cases the protocol is asymmetric
and closed: the FPGA application has little access and control over the coherency protocol.
Later developments include CCIX [25] which supports a symmetric protocol by extending PCIe, and Open-

CAPI [93] which implements an asymmetric protocol over PCIe and Bluelink. Both require accelerators to
work with caching enabled and use virtual addresses, translated by the CPU’s MMU. Performance studies of
CCIX-attached FPGAs [94] have emphasized the importance of cache coherence in heterogeneous architectures.
Compute eXpress Link (CXL) [34] builds coherence and memory semantics on top of PCIe and provides a

uniied coherent memory space between CPU and accelerators. Currently, the irst CXL 1.1 hardware is becoming
available, using an asymmetric protocol with coherence bypass for direct access to unshared device memory.
Symmetric coherence is planned for CXL 3.0 [89], which has triggered interesting ideas around what it will
allow, based on simulations that promise impressive throughput and latency, as well as extensibility beyond one
machine [54, 66, 69]. CXL retains a somewhat prescriptive position on the use of cache coherence messages that
favor ine-grained acceleration idioms, like work stealing, to accelerate applications. More importantly, it is not
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clear what the appropriate interface between accelerator logic and a complex protocol like CXL should be. It is
this latter question that CCKit addresses.
While cache-coherent accelerators and GPUs are becoming available, applications which take advantage of

coherence beyond straightforward uniied address spaces are still rare. We attribute this to the limited availability
of hardware allowing for such specialised and application-driven protocol (ab)use. Such hardware is in turn rare
as manufacturers have a limited incentive to produce and market it without demonstrated industrial applications.

We have developed CCKit, on the Enzian research platform, in an attempt to break this chicken-and-egg cycle.
Our hope is that by providing a realistic, well-supported platform for research into unconventional applications
of coherence we can provide application developers with an accessible path to explore these ideas, and to collect
the necessary evidence to motivate the further development of such lexible coherence platforms.
While we have attempted to select several realistic applications as illustrative examples in this paper, such

as database acceleration (ğ5.6) and remote procedure calls (ğ5.7), we cannot hope to fully predict the scope of
potential applications. CCKit is merely a irst step: pointing to a fruitful area of investigation, and providing a
solid foundation on which to build.

2.3 Coherence in MPSoCs

Alongside these developments in server architecture, processors have evolved towards less homogeneous and
more eclectic designs formed around heterogeneous SoCs and chiplets.
The most mature and broadly adopted coherent CPU-FPGA systems combine both on a single MPSoC, such

as Xilinx Zynq UltraScale+ [107] and Intel Agelix [52]. Sharing an SoC simpliies the physical interconnect and
provides both coherent and non-coherent ports between CPU and FPGA. Coherent access is generally asymmetric:
the FPGA can access the CPU’s LLC. This tightly-engineered integration signiicantly limits both application
lexibility and available CPU performance, the norm being simple dual or quad-core ARM processors aimed at
embedded systems. More lexible but tightly coupled CPU-FPGA systems have been proposed [64], but their
availability and programmability is unclear.

RISC-V’s TileLink takes a more general approach [11, 32, 96] aimed at low-latency connectivity between CPUs,
caches, accelerators, memory, and other SoC components. TileLink has a number of coherence policies which
can be subsets of the MOESI protocol. Multi-socket coherence can be achieved with OmniXtend [82]. While
implementations for high-end CPUs and accelerators (including FPGAs) have yet to appear, TileLink shows a
clear response to the demand for customizable coherent interconnects in increasingly heterogeneous systems, a
demand also observed by others [18, 49, 71, 116].
As mentioned, implementing correct coherence protocols and controllers is a complex undertaking. Bring-

your-own-core [8] simpliies the generation of protocols for integration of heterogeneous devices, allowing
for much of the complexity to be hidden, while work like Crossing Guard [78] and Spandex [5] integrate
disparate accelerators through an intermediate interfaces. Several recent research eforts propose the design or
generation of coherent controllers [18], NoCs [38, 46], and entire SoCs [8, 41, 45, 68, 80, 100], including CPU-
FPGAs SoCs [64]. OpenPiton [7], BlackParrot [80], and others [36, 41, 104] have been taped out. BedRock [104],
built with BlackParrot [80], comes the closest to CCKit in creating an entire conigurable coherence stack, albeit
at the cost of custom RISC-V extensions and no virtual memory or interrupts. It provides correct implementations
within the bounds of standard coherence protocols (e.g. MOESI, MSI, MESIF), but it’s goal is to work at the lowest
level of coherence, as these systems are primarily aimed at SoCs. Sensibly, the focus is RISC-V, considering the
open nature of the ISA, protocols, and many available designs. Systems like Cohort [100] acknowledge the need
for better accelerator integration beyond the SoC level, however this remains unimplemented. None possess a
modern, server-grade CPU, but more importantly for our target applications, they do not have the necessary
system support for distributed, large-scale datacenter workloads.
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3 Approach and Design

CCKit allows FPGA applications to interact directly with a cache coherence protocol in a more lexible way than
assumed by simple coherence. It abstracts away most protocol complexity, providing a portable interface for
application logic to coherently access memory alongside the CPU and also, crucially, to interact with the CPU’s
LLC.

CCKit consists of a hardware component which can be instantiated on an FPGA, and provides the simpliied
interface to user logic, and an OS kernel module which allows access to CCKit from CPU software. Key to CCKit
is factoring the coherence protocol into scalable re-usable hardware units.

The design and interfaces of CCKit are applicable to a range of hardware platforms and coherence protocols,
although an implementation will be speciic to a particular CPU, protocol, and platform. In this section, we describe
the general architecture of CCKit, and in ğ4 discuss our irst implementation using the Enzian platform [31]. To
the best of our knowledge, CCKit on Enzian is the only implementation of a fully symmetric coherent CPU-FPGA
platform.

3.1 Target platforms and assumptions

CCKit makes fairly relaxed assumptions about the underlying hardware. We target 2-node systems where one
node is a conventional multicore CPU, and the other is an FPGA and aMESI-based directory-based write-invalidate
cache coherence protocol connects the two. Physical address space is partitioned between the two nodes. CCKit
assumes an architecture-speciic layer on the FPGA which exchanges messages with the CPU, guaranteeing
delivery and deadlock-freedom but not ordering.

These assumptions are reasonable: most modern coherent multi-socket systems adopt a directory-based [26, 95]
write-invalidate MESI-like protocol rather than less-scalable, broadcast-based snooping [84] protocols. Moreover,
the complex network topologies envisioned by Cache Coherent Interconnect for Accelerators (CCIX) and CXL 3.0
are orthogonal to the goal of CCKit, which is to provide a clear but rich high-level interface between accelerator
logic and the coherence protocol. This allows the underlying state machines implementing the coherence protocol
to change for diferent topologies, but CCKit’s architecture and interface remain the same.
The key challenge that CCKit addresses is this: in practice, race conditions, message reordering by the

interconnect, and concurrency mean that real implementations have many more hidden, intermediate states than
the textbook MESI states, greatly complicating the protocol. More than 100 states is not unusual in a multi-socket
system. The ability of FPGAs to handle this complexity while operating at a lower frequency is cited as an
argument for using asymmetric protocols or no coherency at all in CPU-FPGA systems [35]. CCKit refutes this
argument, providing a full symmetric protocol implementation that (as we show in ğ5.2) keeps pace with the
native CPU implementation while exposing a richer interface.

3.2 High-level architecture

Figure 1 shows the architecture of CCKit. We treat cache lines is homed on the FPGA and the CPU diferently. A
Directory Controller (DC) component maintains the directory information for FPGA-homed lines, including the
local protocol state and the state it believes the line to be in on the CPU. CPU-homed lines are handled similarly
by a Cache Controller (CC) component on the FPGA. The implementation and interface is similar to the DC, but
since it does not need to maintain the directory the CC is rather simpler. We concentrate on the DC in this paper;
our applications in ğ5 use only the DC.
Note that in neither case does CCKit actually cache the line itself ś this is left as a choice to the application

logic. Whether FPGA-based caches are beneicial is an open question, and applications presented here directly
manipulate data in memory.
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Fig. 1. CCKit architecture.

Each DC or CC is responsible for a disjoint region of physical address space. By varying the number of units,
performance can be traded of against FPGA resources. This mirrors the behavior of a CPU LLC, except that the
CPU controllers’ parameters are hardwired (the only łapplicationž to be supported is the cache itself).
CCKit’s architecture is layered. The coherence protocol implementation at the lowest layer simply delivers

messages from the coherent link. The DC and CC sit above and receive the coherence messages. The application
logic lies at the top and implements the accelerators functionality. These components handle coherence transac-
tions and maintains coherence invariants at cache line granularity. Such transactions can be initiated remotely
by the CPU or locally by application logic, and transactions on diferent lines are handled entirely independently.
In fact, though application logic, shown in ğ5, we can create dependencies between them.

3.3 FPGA-side interface

A key feature of CCKit is the interface between the DC and user logic on the FPGA with a focus on providing
maximum controllability and observability of the coherence protocol to user logic. Much of the complexity of
a directory-based cache coherence protocol is due to concurrency: diferent nodes can issue operations on the
same cache line, and coherence messages can be in-light or be re-ordered by the interconnect. The DC (and CC)
hide the complex state machine required on the FPGA to maintain coherence invariants and track the state of
each line on the other (CPU) node. The DC instead exposes to application logic on the FPGA a simpliied state
machine relecting the familiar MESI states. The user logic does not have to track detailed cache line states but
can rely on the guarantees provided by DC. This abstraction is generic enough to cover a range of underlying
MESI-like coherence protocols, but at the same time richer than conventional coherent memory.

Speciically, the DC exposes to application logic all transitions between the primary stable states of the cache
line on both the FPGA and CPU (as far as this can be determined from protocol messages). This is in addition to
seeing reads and writes by the CPU to the cache line, and supporting reads and writes from application logic on
the FPGA. Finally, user logic can issue requests to the CPU’s LLC which are a superset of the usual clean and
invalidate operations.
This is provided, as shown at Figure 2 via an AXI interface for reads and writes (to service upgrade and

downgrade requests, respectively), plus a request-acknowledge interface allowing FPGA logic to trigger, e.g.,
clean (write-back without invalidate) or clean+invalidate operations in the CPU’s LLC, and inally an AXI-lite bus
for I/O coniguration.

In addition, FPGA logic can lock cache lines from being upgraded by the CPU upon completion of the clean or
clean-invalidate operation, ensuring that the CPU’s LLC cannot hold a modiied copy of the cache line and the
FPGA memory must hold the most up-to-date copy until it unlocks the line.

ACM Trans. Comput. Syst.
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arbitrarily configured.

In the simplest use-case, the AXI interface can connect directly to FPGA DRAM controllers to provide coherent
access to FPGA-side DRAM from the CPU. However, non-trivial applications instantiate their own logic between
these components to interact with the coherent interconnect (ğ5). On the Figure 2 two possible conigurations of
the app relative to the DRAM and DC are shown.

This interface, while relatively protocol-independent, is suicient for many useful interactions with the CPU’s
LLC. For example, an application observing an AXI read request for a cache line will infer that the line is invalid
in the LLC and the FPGA has the most up-to-date copy. Similarly, an AXI write request indicates that the line
was either invalid or shared in the CPU’s cache but never exclusive or modiied.

Applications which additionally use the request-acknowledge interface (e.g. ğ5.6, ğ5.4) can issue clean, clean-
invalidate, lock, and unlock (LCL interface on the Figure 2) requests for cache lines, providing full lexibility in
managing the coherence protocol. A state change to a locked state is currently only possible through a clean
message, unlock can be done explicitly. For example, the algorithm to perform a clean action on the cache line,
that is in some state on the CPU, would be to issue a clean request, which will lock the cache line, send invalidate
message to the CPU, wait for the CPU acknowledgment with or without data, wait for a completion of a potential
write, acknowledge the clean operation, and unlock the cache line.

In total, the application can observe read requests and return the data back, observe write requests and store
data to the memory, generate clean messages, thus forcing the up-to-date content of a cache line to be returned
to the device, and unlock (lock) a cache line in order to prevent CPU’s updates. For example, a user can develop
application-speciic coherence protocols on top of the coherence protocol layer, which can be used to maintain
application-speciic invariants between unrelated cache lines (e.g. ğ5.6).

3.4 CPU-side interface

In operation, the CCKit interface to software is relatively simple as coherence is mostly transparent to software, and
what explicit cache operations the CPU supports (lush, invalidate, etc.) simply translate into coherence messages.
Any further coordination, such as using particular cache lines to synchronise a protocol (as demonstrated in ğ5.6
and ğ5.7) is application-speciic and fully visible to software.

We do not, in this paper, explore the full challenge of integrating special-purpose and heterogeneous memory
management in a general-purpose operating system. Linux does have support for a form of heterogeneous
memory management, however we were unable to use existing kernel mechanisms to manage CCKit’s memory.
We have added suicient mechanisms to Linux, in the form of a loadable kernel module, to allow user-space
processes to map DC-managed FPGA-side addresses with the necessary attributes. This is suicient for the
evaluation reported here, but its design is deliberately kept as simple as possible, and does not attempt to manage
these resources in a coherent manner.

ACM Trans. Comput. Syst.
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The kernel module represents the FPGA’s memory space as a device ile, in the manner of /dev/mem. The
module implements the mmap() syscall, allowing a process with the appropriate permissions to map any desired
sub-region of the FPGA address space into its own virtual address space. While the necessary functionality is
straightforwardly supported by the MMU, certain assumptions in the Linux memory management implementation
introduce a few challenges.

For example, huge page mappings reduce TLB pressure and page-table footprint. The applications we present
here also derive no beneit from ine-grained (e.g. 4 KiB) mappings. Also, as these addresses do not actually
represent pageable memory, it is generally preferable for the page tables to be populated eagerly. One instance
where this is signiicant is where an CCKit protocol depends on prefetch hints: the CPU cache silently drops
these where they would trigger a page fault.
The CCKit kernel module bypasses the standard in-kernel interfaces for page mapping. This is a neither a

limitation of CCKit nor of Linux, but relects the fact that heterogeneous devices such as this are using physical
addresses in ways quite diferent to what a conventional system assumes. We do not address this in this work,
but recognize that it is a topic of great interest as heterogeneous systems become more mainstream, that we have
ourselves investigated in other work. We have previously presented [2] an approach using an extension of the
Barrelish [9] research operating system’s capability model to securely manage arbitrary physically-addressible
resources between components with difering views of the system’s address spaces.

4 Implementation Details

Our irst implementation of CCKit is on the publicly available Enzian computer [31, 97], a 2-socket heterogeneous
server platform. One socket holds a Marvell ThunderX-1 CN8890-NT 48-core ARMv8-A CPU running at 2.0 GHz.
It has a 2-level cache with a 16 MiB shared LLC, using 128 B lines, connected to 4 × 32 GiB 2133MT/s DIMMs.
The other socket contains a Xilinx VU9P UltraScale+ FPGA [105], with (in our case) 4 × 16GiB 2400MT/s DIMMs.
The CPU’s native interconnect is exposed to user FPGA logic as the Enzian Coherent Interconnect (ECI); this
inter-socket link has a theoretical bandwidth of 30 GiB/s. About 20 GiB/s is achievable in practice with a round-trip
latency of 230 ns (ğ5.2). Two DDR4 channels (on either node) are suicient to saturate this link. We build on
the existing open-source FPGA łshellž for Enzian, which exposes raw inter-socket protocol ECI messages to the
FPGA. Above this, we implement the DC and CC.

4.1 Underlying hardware coherence protocol

Implementing CCKit on Enzian entails (1) interfacing to raw ECI messages so that the FPGA appears to the CPU
as NUMA-remote coherent memory, and (2) providing the CCKit interfaces to the user’s FPGA application logic.
ECI is a fully symmetric coherence protocol. While it carries other traic (e.g. I/O, interrupts, atomics), we

are concerned with the coherent memory interface, exposed as 5 low-controlled, reliable virtual circuits in
each direction, each devoted to a message type: request with data, request without data, response with data,
response without data, and forward without data. For increased parallelism, all channels are divided in two by the
ThunderX-1, each handling either even- or odd-numbered lines.

The key messages are Read Shared/Exclusive, Upgrade to Exclusive, Voluntary Downgrade Dirty/Clean, and
Forward Shared/Exclusive, and their matching responses. Read, Upgrade, and Voluntary Downgrade requests are
sent from the remote node to the home node, while Forward requests are sent by the home node to force the
remote node to write back. To these platform-deined channels we add local operations carrying user requests
like force invalidation or lock/unlock a line. Requests and responses on this channel are treated exactly as those
on the ECI channels.
Above this, CCKit implements an eicient, deadlock-free, and scalable design providing access to the full

address space while maintaining coherence invariants. There are two key implementation challenges: irst, how
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to ensure that the protocol state machine is correct with regard to the processor’s implementation, and second,
how to saturate the achievable 20 GiB/s of the ECI link with acceptable FPGA resource consumption.

4.2 Correct protocol state machine generation

Implementing CCKit requires the full coherence protocol to be speciied and the DC state machine to be
correctly implemented. Here we provide a overview description of this process. Coherence protocols require the
maintenance of two invariants: single-writer-multiple-reader and data-value. In the scope of CCKit, the CPU
is allowed to perform both caching and non-caching operations but applications on the FPGA are restricted to
perform only coherent non-caching operations. This was done to simplify both the implemented protocol and
the applications themselves for evaluation. Since the CPU is the only entity that can have a modiied copy of a
cache line, the single-writer-multiple-reader invariant is maintained by default.
The CCPI speciication provides the list of coherence messages and information about common types of

transactions. We also collected traces of traic between two CPUs in order to observe the behavior of a correctly
implemented system. From these, we developed an abstract model of the system with the CPU, FPGA-DC, and
interconnect as entities. We also identiied rules of interaction between them when only a single cache line is
involved.

The irst step in generating a speciication is to identify the rules of interaction between the CPU and the DC
in the coherence protocol. The rules are as follows: First the CPU initiates a non-posted upgrade transaction by
issuing an upgrade request and waiting for a response from the DC. The upgrade request can be from any lower
state to any higher state (I to S, I to E or S to E). The DC is responsible for maintaining the coherence invariants
(by keeping track of home and remote states of the cache line in its directory) and responding to the request with
an acknowledgment. Second, the CPU can issue a posted voluntary downgrade transaction to downgrade from
any higher state to any lower state (E/M to S, E/M to I, S to I ). Third, the DC can initiate a non-posted forward

downgrade transaction to request the CPU to downgrade from any higher state to any lower state. The CPU is
responsible for downgrading the state of the cache line and sending an acknowledgment. Fourth, a transaction
that has been initiated cannot be canceled and the protocol does not allow for negative acknowledgments. Finally,
this protocol uses timeouts to identify failures.
Next we look at the nature of the interconnect and how it afects coherence traic. First, the interconnect is

guaranteed to be deadlock free with separate virtual channel for diferent message-classes and non-interfering
low control. Second, the interconnect is reliable and guarantees delivery of messages: A sender does not have
to issue the same message multiple times. Third, the interconnect does not guarantee any ordering between
coherence messages: If there are n messages in transit, they can be received by the receiver in any of n! ways.
Fourth, the interconnect as a non-zero latency and delivery of messages is not instantaneous.

Most of the complexity of the coherence protocol is to handle conlicts that arise due to two reasons: the latency
of the interconnect and the reordering of coherence messages by the interconnect. To illustrate how latency of
interconnect can cause a conlict, consider the CPU evicting a cache line from its Last-Level Cache (LLC) by
posting a voluntary downgrade message. While the message is in transit, the DC can issue a forward downgrade
request which will be received by the CPU that does not have a copy of the cache line. Such conlict scenarios are
handled natively by the protocol through a special class of coherence messages called conlict responses. Next, to
illustrate how reordering can cause conlict, consider the scenario where, for a cache line, the CPU downgrades it
and immediately follows up with an upgrade request. If the messages are received out-of-order by the DC, it has
to contend with the conlict of CPU requesting a cache line that should already have been cached in the CPU.
The DC handles such conlicts by having intermediate states to keep track of out-of-order and in-light messages.

Using these rules of interaction, we can then build a model of the coherence protocol that can be used to
enumerate all possible coherence interactions that would have to be handled by the DC. We start by considering
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only the subset of interactions where there are no conlicts. Given the initial state of the cache line in the CPU, we
can enumerate all possible pathways the interactions can take. For example, if the CPU has a cache line in invalid

state, there are only 3 possible pathways: The CPU continues to have the cache line in invalid state, or the CPU
issues an upgrade request to shared state (and wait for DC’s response), or the CPU issues an upgrade request to
exclusive. Each pathway is a coherence transaction and can be represented in the form of a state-equation which
contains the initial home and remote state of the cache line in DC’s directory, the sequence of messages received
by the DC, the inal home and remote state of the cache line, and the action to be performed by the DC.
Subsequently we broaden the set of coherence transactions by identifying conlict scenarios that arise due

to latency of interconnect. Given the model and rules of interaction, we can enumerate all possible conlict
coherence transactions and identify the action to be performed by the DC in each scenario. These coherence
transactions are also speciied as state-equations. Finally we account for reordering by interconnect by taking
existing state equations with n (>1) messages and creating n! new state-equations. This completes the set of
state-equations required to formally specify the coherence protocol.
CCKit uses state space exploration oline to generate a state machine with all possible intermediate states

from this speciication, ensuring that coherence invariants (SWMR and data-value invariant [74]) and deadlock
freedom are maintained, and optimizing for performance. Building a state machine for single-message coherence
transactions is trivial and requires only one transition rule. As the cardinality (number of messages) of a coherence
transaction increases, CCKit must reduce these transactions tomultiple smaller ones, eachwith only one coherence
event, introducing new intermediate states where necessary.

In principle, there is an intermediate state for every interleaving of in-light messages and cache states at both
nodes ś allowing CCKit to handle out-of-order responses and avoid serializing memory transactions. In many
cases groups of these theoretical states are indistinguishable at the DC and can be collapsed together, reducing
the state space to be explored.
In other cases, to avoid the state machine growing without bounds during state space exploration, it may be

necessary for the machine to stall coherence events for a line until outstanding transactions on the line have
completed ś equivalent to reordering the transaction into a previously known one. Stalling transaction responses

in this way can lead to deadlocks in the state machine, and so CCKit will only stall requests. CCKit’s state machine
on Enzian has 79 states with 304 transitions between them and handles 25 diferent coherence messages.
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4.3 Achieving full performance

The ThunderX-1 cache controller is heavily pipelined and closely integrated with the cache itself, running at the
core clock frequency of 2 GHz. This is more than 6 times the typical FPGA clock of 322 MHz, requiring a tightly
optimized design on the FPGA side.
CCKit heavily exploits spatial parallelism to achieve the same throughput at lower clock speed, adopting a

design with many simple, non-pipelined units operating in parallel. An example CCKit DC coniguration uses
64 in-order Directory Controller Units (DCUs) (divided into odd and even Directory Controller Slices (DCSs))
to handle 24 GiB/s of traic (assuming an AXI-side latency of 300 ns). This is comfortably more than the 70 ns
DRAM latency (Figure 5), leaving plenty of overhead for memory-side application logic (e.g. materialized view in
ğ5.6).
Each DCU handles coherence for a disjoint subset of cache lines. Physical addresses are thus used to route

messages to a DCU. Depending on its type, a coherence message consists of one 64-bit header and up to 16
64-bit payload words. The header contains both the data needed to route to a DCU (address), and all information
(message type, dirty bits, etc.) relevant to the state machine.

As shown in Figure 3, header and payload are separated on ingress. The variable-length payload is stored in a
BRAM (embedded SRAM blocks) table indexed by DCU number and retrieved only when needed to generate a
write transaction on the user-facing AXI interface. Only the ixed-size header passes through the routing and
arbitration logic. The same separation occurs on the AXI response path (for reads) with the generated ECI header
attached to the payload only on egress. AXI transactions are tagged with DCU number to ensure correct routing
of responses.

Each DCU is serial and blocking: there is only one outstanding transaction of each read, write and coherence
transaction types, however other actions can be taken while the controller itself is blocked. Its serial nature
ensures faithfulness of the implementation to its protocol state machine: all steps for an event is completed before
the next event is chosen. To avoid resource deadlocks, the DCU never stalls waiting for a resource. Whenever an
event cannot be handled, it gets delayed and the DCU tries to handle a diferent event. Responses are prioritized
over requests as they may free up resources, but scheduling is otherwise round-robin. All achieved parallelism is
therefore from concurrent transactions on separate DCUs. This works for most workloads as long as the number
of DCUs per slice is chosen to avoid blocking for a sequential workload accessing each DCU in turn: other
workloads beneit from an XOR-based address scrambler in the CPU’s LLC designed to break up pathological
address patterns.
Figure 4 shows the internal architecture of a DCU, with the encoding/decoding interface to raw ECI on the

left, and the common AXI interface to user logic on the right. The DCU does not generate multi-phase AXI
transactions directly, but rather sends a single descriptor per operation and waits on the result. These descriptors
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pass through an arbitration and routing stage analogous to that for ECI messages. At the AXI port the DCU ID is
translated to an AXI ID, allowing in-light transactions equal to the number of DCUs, which may complete out of
order. The DCUs neither assume nor guarantee any ordering on requests to diferent cache lines.

The directory and protocol ROM (generated from the high-level formal speciication in ğ4.2) together implement
the per-line coherence protocol. The ROM is indexed by the current state of a line (read from the directory) and
the requested operation, and contains the new line state plus any action (e.g. AXI read) required. The directory is
also scaled to give good utilization of FPGA resources, given the size of the CPU LLC whose state it tracks, with
the same associativity as the LLC to minimize unnecessary invalidation traic.

4.4 Resource usage and footprint

Table 1 shows resources used by diferent components and conigurations of CCKit with 64 DCUs. The irst two
lines show the individual resource consumption of the ECI transport layer and the DC. The remaining lines show
usage when the DC is conigured to access BRAM memory or of-chip DDR controllers (via Xilinx-provided
łMIGsž). Even with this full coniguration, CCKit leaves 70% of the FPGA resources for applications. While the
physical limitations of the FPGA does not allow for unlimited scaling, the newer FPGAs have grown signiicantly
(the VU19P has nearly 9 M CLBs versus the VU9P’s 2.5 M). Additionally, there is a trend to greater hardening of
critical infrastructure (e.g., memory controllers) to provide better performing and space eicient implementation.
Due to these trends, we expect an overall reduction in both relative and absolute usage of resources in the
implementation of CCKit.

Table 1. Resource Utilization Footprint on FPGA

Coniguration LUT (%) CLB (%) BRAM (%)

ECI 7.90 11.27 8.24
DC 6.86 12.16 5.93

ECI+DC+BRAMs 14.89 24.03 15.65
ECI+DC+MIGs 19.23 30.26 17.33

5 Evaluation & example applications

We present both micro-benchmarks and example applications to demonstrate that CCKit provides comparable
performance to the native CPU hardware, and that its lexibility and customization enables innovative features
beyond simple acceleration. The four diferent use-cases show CCKit can be used to explore acceleration models
enabled by both asymmetric and symmetric coherence. We focus on simpliied examples to highlight acceleration
patterns enabled by CCKit, rather than accelerating a complete application.

5.1 Experimental Setup

We microbenchmark CCKit on Enzian in two diferent conigurations, shown in Figure 5. In the DC+DDR

coniguration, the FPGA connects the AXI interface of each DCS to one 16 GiB DIMM with a standard Xilinx
DRAM controller IP (MIG) [106]. In DC+BRAM , we replace the DRAM with two 64 KiB BRAMs to isolate the
performance of the DC from that of the Xilinx DRAM IP.
As a baseline, we compare these with LLC+DDR, a 2-socket Gigabyte R150-T61 [44] server based on two

Marvell CN8890 ThunderX-1 CPUs connected by CCPI, the proprietary native coherence protocol on which ECI
is based. As with Enzian, the CPUs run at 2 GHz and each node has four 64 GiB DIMMS.
The round-trip latency and throughput igures in Figure 5 are the measured performance of the existing

hardware (for LLC+DDR), or the ECI implementation supplied with Enzian (for DC+DDR and DC+BRAM). The
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DRAM and BRAM igures are likewise measured on the unmodiied base platform. These thus represent upper
bounds on the performance of CCKit’s DC as ixed parameters of the underlying platform. ECI shows 7% higher
throughput at 15% higher latency than the native 2-socket ThunderX-1 implementation.

5.2 DC read-write performance

While the supplied Enzian ECI implementation is comparable to the CPU’s own, the DC adds symmetric coherence
between the two sockets. In this section, we evaluate the performance after introducing the DC. For all three
conigurations in Figure 5, we measure throughput and latency for sequential and random reads and writes on a
contiguous 1 GiB region. As the ThunderX-1 LLC has no hardware prefetcher, both sequential and random read
throughput tests use prefetch hint instructions to avoid serializing on LLC reills.
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Fig. 6. CCKit DC performance vs. two-CPU system.

Figure 6 presents throughput for all combinations. Each bar is the mean of 100 runs, with (negligible) standard
deviation indicated. For DC+BRAM , sequential reads slightly exceed the baseline, showing that the distributed
DC is able to match the throughput of the CPU’s LLC at 1/6 the clock rate. Throughput drops signiicantly
once BRAM is replaced with DRAM. One potential cause is the known ineiciency of the Xilinx MIG IP under
non-sequential access patterns [106], interacting with the ThunderX-1 LLC address scrambler, transforming
sequential reads into a pseudo-random pattern. Fully random reads further stress the MIG’s scheduler and begin
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Table 2. Sequential and Random Read Latency

Coniguration Seq. Read (ns) Rand. Read (ns)

LLC+DDR 268 271

DC+BRAM 454 444

DC+DDR 591 601

to cause contention on DCUs, leading to a moderate slowdown relative to sequential. Future improvement in the
Xilinx IP could reduce or eliminate this ineiciency.

Sequential and random writes perform similarly, and are broadly consistent with random reads. This is likely
due to ECI writeback messages to the DC being generated not in program order but by LLC evictions which
introduce additional randomness to the access order.
The overall trend is lower throughput as randomness increases, consistent with reduced utilization of DCUs,

compounded by the low non-sequential performance of the MIG IP. The bursty nature of write traic from the
ThunderX-1’s 3 KiB per-core write bufer likely also contributes to exceeding the in-light transaction capacity of
the DC. Increasing the number of outstanding transactions per DCU would improve performance for applications
with more random or write-heavy access patterns.

From a design perspective, non-sequential accesses can sufer because each DCU is non-pipelined to optimize
for resources. When a DCU is processing a coherence event, subsequent coherence events are blocked until the
operation completes. Therefore, best performance is achieved for a sequential workload where all DCUs are busy.
In a bursty workload, some DCUs might be idle while others might have multiple outstanding messages to be
handled. A sequential write workload is a sequential read exclusive into the CPU’s cache followed by a bursty
write as we do not have control over the order in which cache lines get evicted. Thus even with a BRAM, a drop
in performance is observed.

Table 2 shows the average round-trip latency of reads for all three conigurations. These are the average of 15
runs over the full 1 GiB, with one access per cache line and no prefetching to ensure serialization. Comparing
LLC+DDR with DC+DDR indicates that CCKit adds 323ś330 ns latency relative to the CPU, with the random
pattern 1ś2% slower. Comparing DC+BRAM with DC+DDR isolates the impact of the DC itself to 173ś186 ns,
with the remaining 137-157 ns due to the DRAM latency and the AXI interconnect. A write instruction commits
once it hits the write bufer, ergo it has the same latency characteristics as a read.
While DC performance can be further optimized, it already demonstrates that with careful design, CPU-

comparable performance can be achieved on FPGAs.

5.3 DC clean-invalidate performance

In addition to allowing the CPU to coherently cache FPGA-homed data, CCKit provides a request-acknowledge
interface so that FPGA applications can issue clean or clean-invalidate requests for FPGA-homed cache lines, and
wait until the operation completes. Both operations cause the writeback of an FPGA-homed cache line that is
dirty in the CPU’s LLC, with clean-invalidate additionally invalidating the CPU’s copy. Many use cases described
in this paper rely on these operations and so we evaluate their performance.

For both DC+BRAM and DC+DDR conigurations, the CPU irst reads 8 MiB of sequential data into its LLC in
shared (clean) state, which is then invalidated by an FPGA application via the DC. To measure the latency of a
single round-trip invalidation, the application issues one outstanding request to the DC at a time. To measure
throughput, the application issues as many requests at a time as possible and measures the time taken to invalidate
8 MiB of CPU-cached data. This throughput is higher than indicated by per-request latency due to beneits from
pipelining.
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Table 3. Directory Controller Clean-Invalidate Performance

Coniguration Throughput (106 CL/s) Latency (ns)

Lower bound 150 ś
DC+BRAM 181 350
DC+DDR 230 350

Upper bound 322 ś

Throughput and latency are shown in Table 3. The latency of a single invalidate is the same in both cases
(350 ns) but throughput varies. The throughput is bounded above by the rate at which the application can issue
requests (1 per clock at 322 MHz), and below by the time needed to write back 8 MiB of dirty 128 B cache
lines at the measured ECI throughput of 20 GiB/s (≈ 150 × 106 CL/s). The computed throughput varies, as an
unpredictable fraction of the lines are voluntarily evicted by the CPU, in which case the DC completes immediately
without sending a message, but are in both cases solidly between the indicated bounds. We conclude that for any
application with a non-trivial fraction of dirty data in the CPU LLC, the FPGA-initiated invalidation rate will be
limited by the bandwidth available for dirty data writeback, and not the DC.

5.4 Concurrent shared data structures access

As a irst application use-case, we demonstrate how to use CCKit to enable threads on the CPU (host) and the
FPGA (device) to concurrently work on a shared data structure while maintaining coherence. This application is
used to demonstrate CCKit’s equilvalent of CXL.cache protocol or the ine-grained acceleration pattern enabled
by HARPv2 [19, 27, 29] but with the following distinctions. First, for simultaneous host and device access to device
memory, CXL 2.0’s assymmetric protocol requires an expensive round-trip interaction over the interconnect
for every single cache line access by the device to its own memory. Furthermore, CXL introduces a special
non-coherent bypass mode for mitigating this cost when the device memory is marked as non-accessible by the
host. In contrast, the symmetric nature of ECI initiates traic over the interconnect only when the cache line is
cached by the host, removing the need for a bypass mode irrespective of whether the device memory is marked
as shareable or not.

This example serves as the basis for for distributed computing applications like appbt [17] and for approximate
computing [56] where the data is modiied through the network directly on the FPGA while threads on the
CPU are also accessing the same data. The experiment also allows us to observe CCKit under contention and
demonstrate that it has the same performance characteristics as a conventional NUMA system with two CPUs
compared to e.g. HARP in which ine-grained co-processing is considered nearly impossible [27].
The shared data structure we use in this experiment is a table homed in FPGA BRAM. Each row is padded

to the cache line size of 128 B. The table has a size of 8 MiB (65536 rows). The CPU and FPGA concurrently
scan the table and increment the value of a counter at each row. The CPU always scans the full table, but we
vary the contention rate by limiting the FPGA to only access a part of the table. We run the experiment for 1 s
and measure the number of rows the CPU is able to process. For comparison we run the same workload on our
2-socket Gigabyte server. The memory for the shared table and the thread generating contention are pinned to
one of the NUMA nodes using Linux’s NUMA policy library. The thread that always scans the full table is the
same as in the CPU-FPGA case and is pinned to the other NUMA node. In both cases we warm the L2 cache on
the CPU where we perform the measurement.
The FPGA thread uses the locking variant of clean-invalidate. Once it is completed, cache line state in the

CPU’s LLC is invalid and the BRAM has the most up-to-date value for this cache line. The FPGA thread can
atomically read-modify-write this cache line before unlocking it.
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Fig. 7. Shared data access: CPU–CPU vs. CPU–FPGA.

Figure 7 shows the results. We plot the throughput of the thread that always scans the full table vs. the fraction
of the table that is accessed by the contending thread. Throughput is given in millions of rows per second (Mrps),
and we report average and standard deviation for 10 iterations. In the CPU-FPGA coniguration the CPU reaches
about 45.5 Mrps without contention. This gradually degrades to about 2.5 Mrps when the FPGA contends for the
entire table. In the CPU-CPU coniguration the respective numbers for the access thread are about 41 Mrps with
no contention and 5 Mrps with maximum contention.

We can see from the shape of the curves in Figure 7 that the CPU-FPGA setup using CCKit behaves very similarly
to a two socket server with the same CPU. The slightly lower performance of the CPU-FPGA coniguration is
explained by the latency that CCKit adds to migrating a cache line across the interconnect.

5.5 Application-specific prefetching

The second application showcases CCKit’s equivalent of CXL.mem protocol for memory expansion. In this use
case, we use the FPGA as a smart memory controller that expands the memory available to the host by providing
coherent access to device memory while adding new features. This is the basis for application-customized
memory controllers that provide support for special data types, memory traversal functions, or for exploring
memory-semantic SSDs [110] (prefetch data from storage to FPGA main memory) and near-storage FPGA
acceleration [48, 61]. We implement a sequential parallel prefetcher which increases the performance of any
accesses to the FPGA-homed in-memory data when multiple concurrent client threads read it sequentially. The
use case also illustrates the beneits of tailoring the memory subsystem behavior to speciic applications, their
access patterns, and how this can be tightly integrated with the coherence stack.

Using the DC+DDR coniguration, the prefetcher lies between the DC and FPGA-side DRAM, intercepting all
reads to tables that miss in the CPU LLC. To maximize performance, we implement multiple parallel prefetch
units, each of which can read data for diferent execution threads using on-chip BRAM to store blocks.

When an LLC miss occurs within the table, the prefetcher irst calculates the block address of the intercepted
cache line. It then assigns this request to an available prefetch unit which fetches the block from DRAM in a
series of 64-beat AXI burst transactions to maximize the available DRAM performance. To avoid unnecessary
overheads, prefetching is done in the background, and the intercepted cache line is served and returned to the
CPU with priority (i.e. hot line irst) through the existing direct path to DRAM. Additionally, when a sequential
read to the second half of a block is detected, another prefetch unit is preemptively allocated to get the next
block. This overlapping ensures that subsequent access to increasing ofsets is served with minimal delay. A
non-sequential read from a block that is not currently preloaded will be assigned to a free unit to start a new
prefetch operation.
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Fig. 8. Performance of the simple prefetcher.

Our experiment reads table rows sequentially from the FPGA’s DRAM. The prefetcher we conigure has eight
parallel blocks of 8 KiB each, which in total uses < 1% of the available BRAM resources. Overlapped operation
is suicient to sustain efective prefetching for the workloads of up to four concurrent clients. Figure 8 plots
throughput against the number of concurrent threads performing the read operation, compared to the performance
without the prefetcher. We see that the addition of the prefetcher signiicantly improves the sequential memory
access performance, nearing the DRAM’s optimal throughput.

5.6 Materialized database view maintenance

In the third use case, we demonstrate how CCKit enables non-traditional FPGA acceleration models that go
beyond the traditional models provided by PCI Express (PCIe) and CXL interconnects. We oload application
speciic coherence onto the FPGA transparently to software running on the CPU. We also use this application to
introduce the notion of application-speciic coherence protocols and how they can be built on top of standard
coherence protocol layers in CCKit.

Such an application could potentially be implemented with CXL 3.0’s back-invalidation snooping mechanism
but since CXL was not designed for customizing coherence protocols (for e.g. the device’s home agent still
resides across the interconnect on the CPU), it is unclear whether it is possible. Nevertheless, recent works on
near-data-processing [62], crash consistency [12], and disaggregated memory [22] propose such an interaction.
We oload view maintenance as used in a relational database to the FPGA and use coherence to ensure the

CPU always sees consistent data even as the base table is being modiied. Relational engines use views to provide
logical data independence: the ability to provide diferent data organizations over a common underlying schema.
Views can be virtual or materialized, meaning that the view corresponds to an actual table that is the result of
running the query deined in the view. Such materialized views are used for a range of purposes: access control,
simplifying query development, and performance optimization by pre-computing parts of common queries. Here,
we exploit the FPGA’s ability to control the CPU’s cache in an application-speciic manner, using the fact that
CCKit provides access to coherence protocol messages to trigger operations on the FPGA that handle expensive
view maintenance tasks the CPU would otherwise have to perform.

For the experiment, we use a table from the TPC-H benchmark, ORDERS, containing information about orders
placed by clients. This base table is append-only, and resides in the DRAM of the FPGA. The attributes of interest
are O_CUSTKEY (customer identiier) and O_TOTALPRICE (sale price), both stored as 64 b integers. The table is
coherently accessible from the CPU as normal, writable NUMA memory.
We deine a materialized view over the base table as follows: SELECT SUM(O_TOTALPRICE) FROM ORDERS

GROUP BY O_CUSTKEY ORDER BY O_CUSTKEY;. This view aggregates the total price of all orders by each customer,
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Fig. 9. View materialization performance.

sorting the result by customer key. The materialized view is stored in a second coherent address range backed by
FPGA BRAM.
The oloaded view maintenance (i.e. application protocol) works as follows. On the CPU side, transactions

update the base table with new orders. Each appends a tuple to the table by loading the next tuple location in
exclusive mode into the CPU cache and updating it. Upon transaction commit, a view maintenance operator
on the FPGA is triggered. This operator invalidates the CPU cache lines holding updated tuples and, as part
of the process, reads the data written back and updates both the base table and the materialized view with the
new aggregate calculations. From this point on the view table is consistent with the base table and can be read
freely. The CPU invokes the operator by issuing a read on a pre-deined synchronization address, signaling via
an invalidation message to run the FPGA’s view maintenance operator. Note that the CPU software is no longer
required to do any cache or synchronization operations (expensive lushes and fences) to keep two diferent
address spaces (the base and view tables) coherent with each other. The view-maintenance application protocol
built on top of CCKit’s DC does this transparently.
Figure 9 (view generation time) shows how long it takes the FPGA to update the base table and propagate

changes to the materialized view. We vary the number of updates (appends) per transaction on the base table
and measure the overall throughput observed over the interconnect. As the igure shows, the materialization
operator is bound by the interconnect bandwidth, with a response time linear in the base table size since the
view is recomputed by recalculating all aggregations. This could be optimized by computing only those that need
to be modiied and updating the corresponding entries in the materialized view.

This use case shows that CCKit enables the implementation of coherent applications that go beyond the usual
deinition of coherence, e.g. tying the coherence of multiple addresses related by a computed function.

5.7 Low-latency messaging

Lastly, we show that CCKit can be used to implement synchronous, low-latency message passing between
coherent agents. Here we build a simple blocking RPC interface between a CPU core and an accelerator on the
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Fig. 10. Latency of CPU-FPGA RPC using CCKit.

FPGA. This permits the user to, for example, explore applications enabled by fully-symmetric protocols such as
CXL 3.0.
The quiescent state of the protocol, after a registration/initialisation phase, involves two cache lines. Both

caller (CPU) and callee (FPGA) hold one of these lines in exclusive state, ensuring that a copy exists only in its
own cache, and that it may be modiied without notiication (a silent upgrade). We label the CPU-held line � and
the FPGA-held line �.

The CPU begins by writing the RPC arguments to�, which completes locally without any coherence messages.
To signal to the FPGA that a request is ready, the CPU issues a load-exclusive request for � from software, by
writing to a reserved ield within it arranged to not overlap with the eventual RPC response. This generates
the corresponding interconnect message, which the FPGA receives. The CPU core will stall until this message
receives a response.
Knowing that � now holds RPC arguments, the FPGA issues its own load-exclusive for �. The CPU’s cache

responds by forwarding the line’s contents to the FPGA and invalidating its own copy. The FPGA now holds both
lines exclusively, and has the RPC arguments. The FPGA does not need to implement a full cache, and simply
uses a pair of registers to hold the content of both lines.

The CPUwill remain stalled, and the caller thus blocked, until the FPGA responds. In this way the user-speciied
RPC handler has full control over the protocol’s progress. The only limitation is any timeout mechanism on
the CPU, which on the ThunderX-1 is on the order of a second. The FPGA need only ensure it completes any
processing within this timeout, and everything will remain entirely transparent to software on the CPU.
Once the RPC is completed and its return value available, the FPGA writes this to � and replies to the CPU’s

stalled load-exclusive request. The RPC result thus ends in the CPU’s cache, with the caller unblocked and ready
to proceed.

The whole process required two interconnect roundtrips: the CPU’s (stalled) request for �, during which the
FPGA fetches �. Furthermore, the system is now back to its quiescent state, with each side holding one of the
lines in exclusive. The CPU now holds �, and the FPGA �. The next request is thus handled with the two lines
exchanging roles.

Figure 10 shows the CDF of end-to-end latencies we measure for a null RPC (the FPGA responds immediately).
The latency is extremely predictable and clustered tightly around the median of 930 ns. This corresponds to two
interconnect roundtrips. The observed outliers are due to misses in the L1 cache (the protocol itself operates on
the L2). Additional disruptions can occur due to the Linux scheduler.
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This example protocol is fully serialising and thus limited by the roundtrip time to a bandwidth of around
200 MiB/s. If bandwidth, rather than latency, is the bottleneck for a particular application, the protocol is
straightforwardly extensible to transfer as many cache lines as desired in each exchange. Synchronisation still
occurs over a single pair of control lines (� and �), with payload lines sent irst and a barrier ensuring that
reordering does not afect correctness. A payload of 100 lines (or around 13 KiB) is suicient to saturate the
Enzian interconnect. These payload lines can also be used to batch requests.
As systems become increasingly power-limited, the cost of dedicating cores to speciic tasks (thus risking

under-utilisation) is decreasing over time. We have long since passed the point where it is eicient (or even
possible) to use all functional units on a processor simultaneously at full performance. For example, using the
AVX-512 vector units on an x86 processor generally causes the processor to automatically reduce its clockspeed
to avoid exceeding its maximum power rating [47]. It is not uncommon for even HPC workloads to actually
perform better using the older less-aggressive instruction sets thanks to the higher available clock speed.

It is moreover a common pattern in high-performance user-space IO stacks such as DPDK or SPDK to dedicate
a core to polling descriptor queues. The protocol described here improves on this by keeping the processor
pipeline stalled whenever the protocol is idle, giving it the opportunity to enter a sleep state.

Where multiple hardware execution contexts (e.g. hyperthreads) are available per core, a single core would be
able to coordinate multiple RPC transactions in parallel without increasing its power consumption. The limitation
here is the number of outstanding loads the core permits (i.e. the number and/or width of load-store units). This
suggests an interesting direction in architecture research for communication-limited workloads, an insight that
has also been explored for graph-processing architectures by Intel’s PIUMA design [1] and advocated for systems
more generally [51].

CCKit achieves this without any additional hardware, beyond the coherent CPU and accelerator, in contrast to
systems such as HyperPlane [72]. The protocol we present here also improves on state-of-the-art CPU-based
messaging protocols such as FastForward [43], as low-level access to the protocol permits the exchange in only
two interconnect round-trips, in a way which cannot easily be replicated in software.

6 Related Work

As discussed in ğ2, there is growing interest in new coherence models and associated applications. Researchers
have demonstrated the need for non-standard or even dynamically customized coherence protocols. For example,
Cohmeleon demonstrates that, for diferent types of accelerators, the best performing cache coherence protocol
varies at runtime [116]. Similarly, CoNDA demonstrates the beneits of iner-grained coherence, and proposes a
more customizable protocol to increase eiciency and performance [14].

FPGAs have been used to optimize a number of algorithms; many of these could greatly beneit from coherence
provided by CCKit. For example, FPGAs have been used to eiciently balance a tree data structure [114]. The
addition of cache coherence would allow for concurrent access during rebalancing without the need for external
signaling or explicit data transfers. Similarly, many features of Alibaba’s OLTP X-Engine [50] could beneit from
customizable cache coherence protocols, including operators explored in ğ5.

The movement towards data center disaggregation raises questions on how to handle the additional complexity
of new memory tiers. Both POND [66] and TPP [69] are built around CXL, but are primarily interested in the
near-NUMA latency of the interconnect and not coherence per se. However, others have demonstrated the utility
of ine-grained cache coherence in disaggregated systems [22, 63]. For example, MIND advocates a lexible
cache coherence protocol integrated into the network [63]. Clio argues that customizable, application-accessible
coherence is desirable in these systems for limiting coherence overhead [49].
CCKit can be used to prototype memory-semantic storage systems [110], currently only simulated by re-

searchers. Furthermore, cutting-edge memory semantic SSDs [110] do not have an FPGA on the data path, which
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can be useful to accelerate near-storage data analytics [61] or oload memory management tasks which are
critical for inference in billion-parameter LLM models that do not it in main memory [4].

SmartNICs often employ FPGAs to accelerate common networking tasks such as RPC calls [60] or RDMA [90,
111]. These systems provide signiicant improvement, but the addition of coherence using techniques provided
by CCKit can provide added beneit. For example, in Dagger, coherence could allow the use of low-latency
synchronization primitives instead of complex application-level interactions [60]. StRoM, when ported to CCKit,
could enable RDMA atomic operations by directly manipulating the cache using customizable cache coherence.
Rambda proposes several architectural changes for acceleratingmemory-intensive applications which are centered
around accelerator coherence [111].

The RPC application of ğ5.7 has a lot in common with the concurrently-developed and published CC-NIC [88]
design. The CC-NIC authors have come to many of the same conclusions about the potential beneits of the
careful use of coherence traic for eicient message passing. Both it and our example build on the insights of
existing work such as FastForward [43] on fast coherence-based software message passing. In our example we
take one step beyond CC-NIC in using pipeline stalls as a hardware blocking mechanism, which is enabled by
the extremely ine-grained protocol control permitted by CCKit.
A complete discussion of cache coherence simulators is beyond the scope of this section (see [15] for a more

thorough discussion). Simulation tools [13, 53, 87] are essential for developing protocols and architectures. How-
ever, simulating a real application with these tools is incredibly slow, and often simulators trade of architectural
idelity and accuracy for speed [76]. To evaluate the low-level correctness of controllers and protocols, RTL
simulations are often necessary, requiring HDL descriptions of the CPU, interconnect, and accelerator which are
seldom available to researchers. Even if these models are available, cutting-edge cycle accurate simulators run in
the scale of kHz [37, 99], making the simulation of complex systems and applications under real workloads nearly
impossible. Synthesizing RISC-V cores on FPGAs running at ≈50 MHz [57, 109] allows for experimentation with
full system software stacks at interactive speeds, however it is limited to only a few out-of-order cores per FPGA.
CCKit complements these techniques by providing a real-world implementation that can faithfully interact

with not only real hardware (e.g. of-chip memory, accelerators) and software, but as a part of a networked or
rack-scale system.
Similarly, the generation of complex but correct coherence protocols, controllers, and NoCs, as discussed in

ğ2.3, is an important and active area of research, the a complete discussion is beyond the scope of this paper.
These systems are focused on the low-level architectural decisions when creating (sometimes heterogeneous)
SoCs. Many of the techniques used for generation are complimentary [18], however, the scope is signiicantly
diferent. CCKit aims to explore enterprise and cloud workloads requiring large server-class CPUs and commercial
accelerators/peripherals with the ability to expand to the rack scale.
Finally, FPGA shells [58, 59, 67, 112, 113] provide, to varying degrees, spatial and temporal multiplexing

of FPGA resources (including externally-attached memory) between applications implemented in user logic,
memory translation, and other services such as networking. All target PCIe-based accelerator cards, adopting a
DMA-based approach to acceleration, which rules out both the straightforward use of cache coherence between
FPGA and CPU, and the lexibility aforded to applications which have direct access to the coherence protocol.
CCKit rectiies this, as a potential component of an FPGA OS which implements cache coherence memory access
to both FPGA and CPU memory, and as a critical OS abstraction to make coherence protocols accessible to
developers of heterogeneous CPU-FPGA applications. It also exposes limitations of existing operating systems
when dealing with modern accelerators (ğ3.4).
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7 Conclusions

CCKit shows that experimenting with direct access to a real, native cache coherence protocol from FPGA-based
user applications is possible using open hardware available today. This fast, portable hardware interface to such
a protocol provides the functionality needed for interesting use-cases beyond simple coherence without exposing
the complexity of the underlying protocol. This work has been used to evaluate smartNICs [108] and novel
memory systems [103]. The whole of CCKit is publicly available as open source as will all the use-cases and
benchmarks in this paper 1. Even if CXL becomes the standard interconnect for accelerators, there remains a
long term need for observable and customizable tools for exploring coherence in large-scale systems.
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