
CCKit: An open-source toolkit for cache coherent accelerators

ABISHEK RAMDAS, Systems Group, ETH Zürich, Zurich, Switzerland

DAVID COCK∗, Systems Group, ETH Zürich, Zurich, Switzerland

MICHAELGIARDINO†, SystemsGroup, ETHZürich, Zürich, Switzerland andComputing Systems Lab, Huawei

Technologies Co Ltd, Zürich, Switzerland

DARIO KOROLIJA‡, Systems Group, ETH Zürich, Zurich, Switzerland

ANASTASIIA RUZHANSKAIA, Systems Group, ETH Zürich, Zurich, Switzerland

DANIEL SCHWYN§, Systems Group, ETH Zürich, Zurich, Switzerland

ADAM TUROWSKI, Systems Group, ETH Zürich, Zurich, Switzerland

GUSTAVO ALONSO, Systems Group, ETH Zürich, Zurich, Switzerland

TIMOTHY ROSCOE, Systems Group, ETH Zürich, Zurich, Switzerland

The trend towards system specialization is leading to a proliferation of accelerators, exposing interconnects as serious

bottlenecks, both in functionality and performance. As a result, several alternative approaches have been proposed which

promise to expand the coherence domain beyond homogeneous sockets to rack scale heterogeneous systems. In parallel, GPU

vendors have developed their own high bandwidth interconnects also aiming for heterogeneous coherence beyond the CPU.

This expansion of the coherency domain raises many questions that remain unanswered, in particular, how devices other

than CPUs will interact with the coherence protocol and whether applications can take advantage of these expanded domains.

As protocols such as CXL are still evolving, it is important to explore alternative designs that go beyond what the commercial

speciications dictate. For this purpose, we developed CCKit, an open-source, server-class toolkit comprising a complete

cache coherency stack on reconigurable accelerators. CCKit is more lexible than commercial products and its performance

is highly competitive with hardware-based implementations, thus enabling important and novel application use-cases for

expanded coherence domains. Experimental data from real workloads provide the ability to inluence and expand future

interconnects, protocols, and applications.

CCS Concepts: · Computer systems organization→ Reconigurable computing; Heterogeneous (hybrid) systems; ·

General and reference→ Experimentation; ·Hardware→ Buses and high-speed links; Reconigurable logic applications.

∗D. Cock is currently with Neutrality
2M. Giardino is currently with the Computing Systems Lab at Huawei Zurich Research Center, Switzerland
3D. Korolija is currently with Advanced Micro Devices, Switzerland
ğD. Schwyn is currently with Neutrality

Authors’ Contact Information: Abishek Ramdas, Systems Group, ETH Zürich, Zurich, Zürich, Switzerland; e-mail: abishek@exascale.info;

David Cock, Systems Group, ETH Zürich, Zurich, Zürich, Switzerland; e-mail: david.cock@inf.ethz.ch; Michael Giardino, Systems Group,

ETH Zürich, Zürich, ZH, Switzerland and Computing Systems Lab, Huawei Technologies Co Ltd, Zürich, ZH, Switzerland; e-mail: michael.

giardino@huawei.com; Dario Korolija, Systems Group, ETH Zürich, Zurich, Zürich, Switzerland; e-mail: dario.korolija@inf.ethz.ch; Anastasiia

Ruzhanskaia, Systems Group, ETH Zürich, Zurich, Zürich, Switzerland; e-mail: anastasiia.ruzhanskaia@inf.ethz.ch; Daniel Schwyn, Systems

Group, ETH Zürich, Zurich, Zürich, Switzerland; e-mail: daniel.schwyn@inf.ethz.ch; Adam Turowski, Systems Group, ETH Zürich, Zurich,

Zürich, Switzerland; e-mail: adam.turowski@inf.ethz.ch; Gustavo Alonso, Systems Group, ETH Zürich, Zurich, Zürich, Switzerland; e-mail:

alonso@inf.ethz.ch; Timothy Roscoe, Systems Group, ETH Zürich, Zurich, Zürich, Switzerland; e-mail: troscoe@inf.ethz.ch.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7333/2025/8-ART

https://doi.org/10.1145/3763790

ACM Trans. Comput. Syst.

https://orcid.org/0000-0002-7139-9966
https://orcid.org/0000-0003-2997-6560
https://orcid.org/0000-0002-9906-720X
https://orcid.org/0009-0002-3984-3948
https://orcid.org/0009-0005-5234-9751
https://orcid.org/0000-0002-4412-9004
https://orcid.org/0009-0009-7194-1223
https://orcid.org/0000-0002-4396-6695
https://orcid.org/0000-0002-8298-1126
https://orcid.org/0000-0002-7139-9966
https://orcid.org/0000-0003-2997-6560
https://orcid.org/0000-0002-9906-720X
https://orcid.org/0009-0002-3984-3948
https://orcid.org/0009-0005-5234-9751
https://orcid.org/0009-0005-5234-9751
https://orcid.org/0000-0002-4412-9004
https://orcid.org/0009-0009-7194-1223
https://orcid.org/0000-0002-4396-6695
https://orcid.org/0000-0002-8298-1126
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763790
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763790&domain=pdf&date_stamp=2025-08-25

2 • A. Ramdas et al.

1 Introduction

There is increasing interest in extending cache coherence, long regarded as essential for parallel programming
on homogeneous multiprocessors, to other parts of a computer system and in opening up hardware coherence
protocols for other uses. The main trend driving this renewed interest in coherence protocols is the rise of
heterogeneous hardware in the form of Systems-on-Chip (SoCs), and accelerators such as GPUs, FPGAs, TPUs,
etc. Such a shift in hardware design is in turn driven by performance scaling [24, 39], parallel machine learning
workloads [30], and specialization [98]. When a computer is a collection of heterogeneous processing elements
of equal standing, the question arises as to how much of the system should be coherent.
The proliferation of accelerators has also driven innovation in the interconnects linking them to the CPU.

Because PCIe lacks the necessary features to support increasingly sophisticated and powerful accelerators,
proposals like CCIX [25], GenZ [42], and OpenCAPI [93] emerged. Many of these have converged into CXL [34],
whose family of standards has emerged as the front-runner in CPU-centered systems. However, there are other,
more specialized standards for GPUs [86] (NVIDIA NVLink [40, 65], AMD’s Ininity Fabric [10]) that ofer a
diferent set of features from CXL. Recent developments [101] suggest that interoperability between competing
protocols using sub- or supersets of features is on the horizon, but the details remain murky. Additionally, there
is an entire ecosystem of interconnects and protocols for RISC-V and embedded systems [11, 104]. Interestingly,
all these eforts provide cache coherence and/or coherent memory access in ways unavailable before. While
traditional coherence used proprietary interconnects between parts from a single vendor, it is now closer in spirit
to network protocols (see, e.g., [66]).
The generality and lexibility of these interconnects enable innovative architectural designs exploiting co-

herence, such as disaggregated memory [22] or crash consistency for persistent memory [12, 16]. Some even
argue that cache coherence protocols should be tailored to the application [71, 104, 116] rather than ofered as a
black box. However, this requires the tools and suiciently high-level interfaces to allow applications to interact
with the hardware cache protocol. Working with coherence protocols, even those designed with interoperability
in mind, is highly challenging. Real coherence protocols are complex, with hundreds of transient states and
many potential race conditions [73]. Implementing a coherent endpoint as part of an application is diicult and
time-consuming [18, 78]. Reusing an implementation is even harder, particularly when the protocol is being used
non-traditionally.
Simulation fares poorly in these scenarios: either the simulator is painfully slow, making it hard to derive

meaningful results in the presence of I/O and real-world interactions, or it achieves better performance by
simplifying the protocol, potentially losing critical, practical issues [18, 76, 86].
To address this, we present CCKit, an open-source, server-grade, modular, and lexible coherence protocol

design and implementation. We focus on FPGAs as their reconigurablity is ideal for exploring the design space
and meeting the performance requirements of low-level CPU interaction [48, 85]. Indeed, many proposals taking
advantage of coherent interconnects are FPGA-based [12, 22, 23, 60] and companies are already patenting use-cases
based on cache coherent FPGAs [20, 21]. FPGAs are also a standard component in the cloud (Microsoft [70, 81],
Amazon [6], Alibaba [28]), with novel applications e.g., acceleration of database engines [79, 114] that would
greatly beneit from using coherent FPGAs.
Prototyping with CCKit is fast and faithful: its irst implementation runs natively on a real hardware plat-

form [31], and includes a performant coherence implementation matching the speed of the CPU. CCKit is also
lexible: it exposes to applications much more about protocol events than emerging standards do. Crucially,
modiications are simpliied by abstracting most of the state machine complexity of the coherence protocol while
exposing enough low-level access to allow a wide range of use-cases. To ensure lexibility, CCKit is built as an
intermediate layer between the raw coherency messages delivered from the interconnect and the application logic
and ofers high level and well-deined interfaces, making it portable to future standards providing symmetric

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 3

coherence such as CXL 3.0. CCKit is not intended to compete with commercial interconnects, but to provide a
vehicle to build symmetric cache coherent accelerators and applications before products are available. Moreover,
with a wide spectrum of design choices and architectures available, the lexibility and extendability allows for
proposing future interconnect standards by: (1) determining what is needed on the accelerator side to implement
cache coherency; (2) explore applications and software architectures that can take advantage of cache coherency;
and (3) identify performance and design pitfalls arising from coherence protocols that might not be suitable to
common use cases.
We show the performance and versatility of CCKit through micro-benchmarks and several acceleration use

cases. The former demonstrate that CCKit on an FPGA has performance comparable to a CPU, despite the lower
clock frequency on the FPGA. Our use cases explore (a) the implementation of a custom pre-fetcher on the
FPGA (doubling the read throughput from FPGA memory from 7.8 GiB/s to 17.4 GiB/s); (b) the maintenance of
database views with update propagation from base tables to an aggregated view (running at interconnect speed
of 19.5 GiB/s); and (c) synchronous RPC from CPU to Field Programmable Gate Array (FPGA) based on the CCKit
directory controller, outperforming both programmed I/O and DMA (null RPC �50 latency of 900 ns).
In this paper, we present the following contributions:

• CCKit: a fully open, modular, and symmetric coherence protocol design that provides a generalized interface
to applications

• An lexible programmable architecture for cache coherence on an FPGA
• A performant implementation of CCKit on a server-grade platform that allows for the development,
acceleration, and evaluation of complex enterprise workloads

• A toolchain to generate correct application-speciic protocols
• Evaluation of CCKit across several workloads: microbenchmarks, a custom memory prefetcher, main-
tainance of database views using coherence protocol, lockless coherent table updates, and a synchronous
CPU-FPGA RPC

The remainder of the paper is presented as follows: ğ2 presents the current ield of interconnects and coherence
protocols and the placement of CCKit in this context. In ğ3 we present the approach and high-level design of CCKit
and the interfaces. The implementation details are presented in ğ4 including techniques for obtaining CPU-like
performance on an FPGA. The microbenchmarks and application use cases are presented in ğ5. Additional related
work can be found in ğ6 before concluding in ğ7.

2 Background

In this section we provide background into types of coherent protocols (ğ2.1), the types of interconnects and
models of coherence in heterogeneous systems (ğ2.2) and the varied forms of coherence in Multiprocessor System-
on-chips (MPSoCs) This motivates the primary question posed by this research ś what models of coherence
are appropriate in modern large-scale heterogeneous systems? In order to answer this question, we must irst
determine what the design and interfaces (ğ3) and, by extension, implementation (ğ4) of CCKit will be.

2.1 Symmetric vs. asymmetric protocols

A crucial aspect in cache coherence protocols is who controls the protocol, with models of cache coherence
broadly falling into two categories: asymmetric and symmetric [74].
Asymmetric protocols preserve the host-device relationship between CPU and accelerator: both sides can

implement caching agents (and cache data), but only the CPU implements a home agent which tracks ownership
of cache lines. This simpliies accelerator implementation but limits scalability and lexibility. It also signiicantly
afects performance: to access local memory shared with the CPU, an accelerator must make a request to the CPU.
In this model, the accelerator’s data is, from the start, a copy and there is no notion of the accelerator ownership

ACM Trans. Comput. Syst.

4 • A. Ramdas et al.

of data that the CPU might cache. Some of the asymmetric examples that are mentioned in Chapter 10 of [74] are
the CPU-GPU heterogeneous protocol with selective caching [3] or architectures with a global directory residing
on the CPU side and stitching together diferent CC protocols on CPU and GPU nodes.

Moreover, the FPGA loses control over an entire section of the coherence protocol. For example, applications
cannot issue messages that belong to the directory protocol such as the forward downgrade messages and
might be limited to load and store operations performed through the caching agent. Finally, the FPGA also loses
observability over the coherence protocol. For example, applications on the FPGA cannot observe any messages
that are issued by other coherence controllers to the home agent for its own memory. With the concurrency and
dynamism of coherence protocols, not being able to access the global view of the states of cache lines reduces the
guarantees that can be inferred by applications, making it diicult to design applications that can be proved to be
correct.
Symmetric protocols have home agents on both CPU and accelerator, as in a homogeneous NUMA system.

While more complex to implement, they provide seamless coherent integration between the CPU and accelerator.
Less obviously, they allow the accelerator to unconventionally participate in the protocol. Rather than simply
observing transactions on the CPU cache and being notiied by the CPU, the accelerator can actively generate its
own notiications and manage its own memory independently. In [74] under symmetric case fall the distributed
directory-based protocols covered in Chapter 8.

2.2 Accelerators and coherent interconnects

Until recently, accelerators like GPUs used a łhost-devicež computational model based on PCIe in which the host
CPU manages external accelerator resources. Data is oloaded in bulk for processing and the results copied back
to the host. This is the model used by CUDA [75], OpenCL [91], and modern accelerators such as TPUs [55]
and VCUs [83]. It arose in part from the lack of cache coherence between host and device, and favors highly
structured workloads that can be expressed as oloaded batches. This model implicitly assumes the accelerator
takes a copy of the input data, performs a task, and returns results without engaging in any complex exchange or
interaction with the CPU [77].

As accelerators have become more powerful (in some cases, many CPUs are needed to feed a single accelera-
tor [115]) PCIe standards have greatly increased bandwidth. However, the underlying principles of PCIe remained
unchanged, despite its limitations in terms of protocol and features, and the diverse proliferation of accelerators.
Intel HARPv2 [77] and IBM CAPI [92] were early attempts at better accelerator integration, coherently

connecting a server-class CPU and FPGA. HARPv2 used an asymmetric implementation of the symmetric QPI
protocol [33] (in contrast to other approaches available [102]), while CAPI used a PCIe Host Bridge and Coherent
Accelerator Processor Proxy on the CPU, and a service layer on the FPGA. In both cases the protocol is asymmetric
and closed: the FPGA application has little access and control over the coherency protocol.
Later developments include CCIX [25] which supports a symmetric protocol by extending PCIe, and Open-

CAPI [93] which implements an asymmetric protocol over PCIe and Bluelink. Both require accelerators to
work with caching enabled and use virtual addresses, translated by the CPU’s MMU. Performance studies of
CCIX-attached FPGAs [94] have emphasized the importance of cache coherence in heterogeneous architectures.
Compute eXpress Link (CXL) [34] builds coherence and memory semantics on top of PCIe and provides a

uniied coherent memory space between CPU and accelerators. Currently, the irst CXL 1.1 hardware is becoming
available, using an asymmetric protocol with coherence bypass for direct access to unshared device memory.
Symmetric coherence is planned for CXL 3.0 [89], which has triggered interesting ideas around what it will
allow, based on simulations that promise impressive throughput and latency, as well as extensibility beyond one
machine [54, 66, 69]. CXL retains a somewhat prescriptive position on the use of cache coherence messages that
favor ine-grained acceleration idioms, like work stealing, to accelerate applications. More importantly, it is not

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 5

clear what the appropriate interface between accelerator logic and a complex protocol like CXL should be. It is
this latter question that CCKit addresses.
While cache-coherent accelerators and GPUs are becoming available, applications which take advantage of

coherence beyond straightforward uniied address spaces are still rare. We attribute this to the limited availability
of hardware allowing for such specialised and application-driven protocol (ab)use. Such hardware is in turn rare
as manufacturers have a limited incentive to produce and market it without demonstrated industrial applications.

We have developed CCKit, on the Enzian research platform, in an attempt to break this chicken-and-egg cycle.
Our hope is that by providing a realistic, well-supported platform for research into unconventional applications
of coherence we can provide application developers with an accessible path to explore these ideas, and to collect
the necessary evidence to motivate the further development of such lexible coherence platforms.
While we have attempted to select several realistic applications as illustrative examples in this paper, such

as database acceleration (ğ5.6) and remote procedure calls (ğ5.7), we cannot hope to fully predict the scope of
potential applications. CCKit is merely a irst step: pointing to a fruitful area of investigation, and providing a
solid foundation on which to build.

2.3 Coherence in MPSoCs

Alongside these developments in server architecture, processors have evolved towards less homogeneous and
more eclectic designs formed around heterogeneous SoCs and chiplets.
The most mature and broadly adopted coherent CPU-FPGA systems combine both on a single MPSoC, such

as Xilinx Zynq UltraScale+ [107] and Intel Agelix [52]. Sharing an SoC simpliies the physical interconnect and
provides both coherent and non-coherent ports between CPU and FPGA. Coherent access is generally asymmetric:
the FPGA can access the CPU’s LLC. This tightly-engineered integration signiicantly limits both application
lexibility and available CPU performance, the norm being simple dual or quad-core ARM processors aimed at
embedded systems. More lexible but tightly coupled CPU-FPGA systems have been proposed [64], but their
availability and programmability is unclear.

RISC-V’s TileLink takes a more general approach [11, 32, 96] aimed at low-latency connectivity between CPUs,
caches, accelerators, memory, and other SoC components. TileLink has a number of coherence policies which
can be subsets of the MOESI protocol. Multi-socket coherence can be achieved with OmniXtend [82]. While
implementations for high-end CPUs and accelerators (including FPGAs) have yet to appear, TileLink shows a
clear response to the demand for customizable coherent interconnects in increasingly heterogeneous systems, a
demand also observed by others [18, 49, 71, 116].
As mentioned, implementing correct coherence protocols and controllers is a complex undertaking. Bring-

your-own-core [8] simpliies the generation of protocols for integration of heterogeneous devices, allowing
for much of the complexity to be hidden, while work like Crossing Guard [78] and Spandex [5] integrate
disparate accelerators through an intermediate interfaces. Several recent research eforts propose the design or
generation of coherent controllers [18], NoCs [38, 46], and entire SoCs [8, 41, 45, 68, 80, 100], including CPU-
FPGAs SoCs [64]. OpenPiton [7], BlackParrot [80], and others [36, 41, 104] have been taped out. BedRock [104],
built with BlackParrot [80], comes the closest to CCKit in creating an entire conigurable coherence stack, albeit
at the cost of custom RISC-V extensions and no virtual memory or interrupts. It provides correct implementations
within the bounds of standard coherence protocols (e.g. MOESI, MSI, MESIF), but it’s goal is to work at the lowest
level of coherence, as these systems are primarily aimed at SoCs. Sensibly, the focus is RISC-V, considering the
open nature of the ISA, protocols, and many available designs. Systems like Cohort [100] acknowledge the need
for better accelerator integration beyond the SoC level, however this remains unimplemented. None possess a
modern, server-grade CPU, but more importantly for our target applications, they do not have the necessary
system support for distributed, large-scale datacenter workloads.

ACM Trans. Comput. Syst.

6 • A. Ramdas et al.

3 Approach and Design

CCKit allows FPGA applications to interact directly with a cache coherence protocol in a more lexible way than
assumed by simple coherence. It abstracts away most protocol complexity, providing a portable interface for
application logic to coherently access memory alongside the CPU and also, crucially, to interact with the CPU’s
LLC.

CCKit consists of a hardware component which can be instantiated on an FPGA, and provides the simpliied
interface to user logic, and an OS kernel module which allows access to CCKit from CPU software. Key to CCKit
is factoring the coherence protocol into scalable re-usable hardware units.

The design and interfaces of CCKit are applicable to a range of hardware platforms and coherence protocols,
although an implementation will be speciic to a particular CPU, protocol, and platform. In this section, we describe
the general architecture of CCKit, and in ğ4 discuss our irst implementation using the Enzian platform [31]. To
the best of our knowledge, CCKit on Enzian is the only implementation of a fully symmetric coherent CPU-FPGA
platform.

3.1 Target platforms and assumptions

CCKit makes fairly relaxed assumptions about the underlying hardware. We target 2-node systems where one
node is a conventional multicore CPU, and the other is an FPGA and aMESI-based directory-based write-invalidate
cache coherence protocol connects the two. Physical address space is partitioned between the two nodes. CCKit
assumes an architecture-speciic layer on the FPGA which exchanges messages with the CPU, guaranteeing
delivery and deadlock-freedom but not ordering.

These assumptions are reasonable: most modern coherent multi-socket systems adopt a directory-based [26, 95]
write-invalidate MESI-like protocol rather than less-scalable, broadcast-based snooping [84] protocols. Moreover,
the complex network topologies envisioned by Cache Coherent Interconnect for Accelerators (CCIX) and CXL 3.0
are orthogonal to the goal of CCKit, which is to provide a clear but rich high-level interface between accelerator
logic and the coherence protocol. This allows the underlying state machines implementing the coherence protocol
to change for diferent topologies, but CCKit’s architecture and interface remain the same.
The key challenge that CCKit addresses is this: in practice, race conditions, message reordering by the

interconnect, and concurrency mean that real implementations have many more hidden, intermediate states than
the textbook MESI states, greatly complicating the protocol. More than 100 states is not unusual in a multi-socket
system. The ability of FPGAs to handle this complexity while operating at a lower frequency is cited as an
argument for using asymmetric protocols or no coherency at all in CPU-FPGA systems [35]. CCKit refutes this
argument, providing a full symmetric protocol implementation that (as we show in ğ5.2) keeps pace with the
native CPU implementation while exposing a richer interface.

3.2 High-level architecture

Figure 1 shows the architecture of CCKit. We treat cache lines is homed on the FPGA and the CPU diferently. A
Directory Controller (DC) component maintains the directory information for FPGA-homed lines, including the
local protocol state and the state it believes the line to be in on the CPU. CPU-homed lines are handled similarly
by a Cache Controller (CC) component on the FPGA. The implementation and interface is similar to the DC, but
since it does not need to maintain the directory the CC is rather simpler. We concentrate on the DC in this paper;
our applications in ğ5 use only the DC.
Note that in neither case does CCKit actually cache the line itself ś this is left as a choice to the application

logic. Whether FPGA-based caches are beneicial is an open question, and applications presented here directly
manipulate data in memory.

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 7

Cores

Last
Level
Cache

DRAM

F
P

G
A

 H
o
m

e
d

C
P

U
 H

o
m

e
d

App

Logic

DRAM

DC

CC

DC

App

Logic

CPU FPGA

System

Address Space

Fig. 1. CCKit architecture.

Each DC or CC is responsible for a disjoint region of physical address space. By varying the number of units,
performance can be traded of against FPGA resources. This mirrors the behavior of a CPU LLC, except that the
CPU controllers’ parameters are hardwired (the only łapplicationž to be supported is the cache itself).
CCKit’s architecture is layered. The coherence protocol implementation at the lowest layer simply delivers

messages from the coherent link. The DC and CC sit above and receive the coherence messages. The application
logic lies at the top and implements the accelerators functionality. These components handle coherence transac-
tions and maintains coherence invariants at cache line granularity. Such transactions can be initiated remotely
by the CPU or locally by application logic, and transactions on diferent lines are handled entirely independently.
In fact, though application logic, shown in ğ5, we can create dependencies between them.

3.3 FPGA-side interface

A key feature of CCKit is the interface between the DC and user logic on the FPGA with a focus on providing
maximum controllability and observability of the coherence protocol to user logic. Much of the complexity of
a directory-based cache coherence protocol is due to concurrency: diferent nodes can issue operations on the
same cache line, and coherence messages can be in-light or be re-ordered by the interconnect. The DC (and CC)
hide the complex state machine required on the FPGA to maintain coherence invariants and track the state of
each line on the other (CPU) node. The DC instead exposes to application logic on the FPGA a simpliied state
machine relecting the familiar MESI states. The user logic does not have to track detailed cache line states but
can rely on the guarantees provided by DC. This abstraction is generic enough to cover a range of underlying
MESI-like coherence protocols, but at the same time richer than conventional coherent memory.

Speciically, the DC exposes to application logic all transitions between the primary stable states of the cache
line on both the FPGA and CPU (as far as this can be determined from protocol messages). This is in addition to
seeing reads and writes by the CPU to the cache line, and supporting reads and writes from application logic on
the FPGA. Finally, user logic can issue requests to the CPU’s LLC which are a superset of the usual clean and
invalidate operations.
This is provided, as shown at Figure 2 via an AXI interface for reads and writes (to service upgrade and

downgrade requests, respectively), plus a request-acknowledge interface allowing FPGA logic to trigger, e.g.,
clean (write-back without invalidate) or clean+invalidate operations in the CPU’s LLC, and inally an AXI-lite bus
for I/O coniguration.

In addition, FPGA logic can lock cache lines from being upgraded by the CPU upon completion of the clean or
clean-invalidate operation, ensuring that the CPU’s LLC cannot hold a modiied copy of the cache line and the
FPGA memory must hold the most up-to-date copy until it unlocks the line.

ACM Trans. Comput. Syst.

8 • A. Ramdas et al.

DC

APP

Arbiter

DC
LCL

APP

Mem

Mem

AXI

A
X
I

A
X
I

A
X
I

A
X
I

LCL

Fig. 2. Two possible configurations of a user application in CCKit: the access to memory, AXI, and LCL channels can be

arbitrarily configured.

In the simplest use-case, the AXI interface can connect directly to FPGA DRAM controllers to provide coherent
access to FPGA-side DRAM from the CPU. However, non-trivial applications instantiate their own logic between
these components to interact with the coherent interconnect (ğ5). On the Figure 2 two possible conigurations of
the app relative to the DRAM and DC are shown.

This interface, while relatively protocol-independent, is suicient for many useful interactions with the CPU’s
LLC. For example, an application observing an AXI read request for a cache line will infer that the line is invalid
in the LLC and the FPGA has the most up-to-date copy. Similarly, an AXI write request indicates that the line
was either invalid or shared in the CPU’s cache but never exclusive or modiied.

Applications which additionally use the request-acknowledge interface (e.g. ğ5.6, ğ5.4) can issue clean, clean-
invalidate, lock, and unlock (LCL interface on the Figure 2) requests for cache lines, providing full lexibility in
managing the coherence protocol. A state change to a locked state is currently only possible through a clean
message, unlock can be done explicitly. For example, the algorithm to perform a clean action on the cache line,
that is in some state on the CPU, would be to issue a clean request, which will lock the cache line, send invalidate
message to the CPU, wait for the CPU acknowledgment with or without data, wait for a completion of a potential
write, acknowledge the clean operation, and unlock the cache line.

In total, the application can observe read requests and return the data back, observe write requests and store
data to the memory, generate clean messages, thus forcing the up-to-date content of a cache line to be returned
to the device, and unlock (lock) a cache line in order to prevent CPU’s updates. For example, a user can develop
application-speciic coherence protocols on top of the coherence protocol layer, which can be used to maintain
application-speciic invariants between unrelated cache lines (e.g. ğ5.6).

3.4 CPU-side interface

In operation, the CCKit interface to software is relatively simple as coherence is mostly transparent to software, and
what explicit cache operations the CPU supports (lush, invalidate, etc.) simply translate into coherence messages.
Any further coordination, such as using particular cache lines to synchronise a protocol (as demonstrated in ğ5.6
and ğ5.7) is application-speciic and fully visible to software.

We do not, in this paper, explore the full challenge of integrating special-purpose and heterogeneous memory
management in a general-purpose operating system. Linux does have support for a form of heterogeneous
memory management, however we were unable to use existing kernel mechanisms to manage CCKit’s memory.
We have added suicient mechanisms to Linux, in the form of a loadable kernel module, to allow user-space
processes to map DC-managed FPGA-side addresses with the necessary attributes. This is suicient for the
evaluation reported here, but its design is deliberately kept as simple as possible, and does not attempt to manage
these resources in a coherent manner.

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 9

The kernel module represents the FPGA’s memory space as a device ile, in the manner of /dev/mem. The
module implements the mmap() syscall, allowing a process with the appropriate permissions to map any desired
sub-region of the FPGA address space into its own virtual address space. While the necessary functionality is
straightforwardly supported by the MMU, certain assumptions in the Linux memory management implementation
introduce a few challenges.

For example, huge page mappings reduce TLB pressure and page-table footprint. The applications we present
here also derive no beneit from ine-grained (e.g. 4 KiB) mappings. Also, as these addresses do not actually
represent pageable memory, it is generally preferable for the page tables to be populated eagerly. One instance
where this is signiicant is where an CCKit protocol depends on prefetch hints: the CPU cache silently drops
these where they would trigger a page fault.
The CCKit kernel module bypasses the standard in-kernel interfaces for page mapping. This is a neither a

limitation of CCKit nor of Linux, but relects the fact that heterogeneous devices such as this are using physical
addresses in ways quite diferent to what a conventional system assumes. We do not address this in this work,
but recognize that it is a topic of great interest as heterogeneous systems become more mainstream, that we have
ourselves investigated in other work. We have previously presented [2] an approach using an extension of the
Barrelish [9] research operating system’s capability model to securely manage arbitrary physically-addressible
resources between components with difering views of the system’s address spaces.

4 Implementation Details

Our irst implementation of CCKit is on the publicly available Enzian computer [31, 97], a 2-socket heterogeneous
server platform. One socket holds a Marvell ThunderX-1 CN8890-NT 48-core ARMv8-A CPU running at 2.0 GHz.
It has a 2-level cache with a 16 MiB shared LLC, using 128 B lines, connected to 4 × 32 GiB 2133MT/s DIMMs.
The other socket contains a Xilinx VU9P UltraScale+ FPGA [105], with (in our case) 4 × 16GiB 2400MT/s DIMMs.
The CPU’s native interconnect is exposed to user FPGA logic as the Enzian Coherent Interconnect (ECI); this
inter-socket link has a theoretical bandwidth of 30 GiB/s. About 20 GiB/s is achievable in practice with a round-trip
latency of 230 ns (ğ5.2). Two DDR4 channels (on either node) are suicient to saturate this link. We build on
the existing open-source FPGA łshellž for Enzian, which exposes raw inter-socket protocol ECI messages to the
FPGA. Above this, we implement the DC and CC.

4.1 Underlying hardware coherence protocol

Implementing CCKit on Enzian entails (1) interfacing to raw ECI messages so that the FPGA appears to the CPU
as NUMA-remote coherent memory, and (2) providing the CCKit interfaces to the user’s FPGA application logic.
ECI is a fully symmetric coherence protocol. While it carries other traic (e.g. I/O, interrupts, atomics), we

are concerned with the coherent memory interface, exposed as 5 low-controlled, reliable virtual circuits in
each direction, each devoted to a message type: request with data, request without data, response with data,
response without data, and forward without data. For increased parallelism, all channels are divided in two by the
ThunderX-1, each handling either even- or odd-numbered lines.

The key messages are Read Shared/Exclusive, Upgrade to Exclusive, Voluntary Downgrade Dirty/Clean, and
Forward Shared/Exclusive, and their matching responses. Read, Upgrade, and Voluntary Downgrade requests are
sent from the remote node to the home node, while Forward requests are sent by the home node to force the
remote node to write back. To these platform-deined channels we add local operations carrying user requests
like force invalidation or lock/unlock a line. Requests and responses on this channel are treated exactly as those
on the ECI channels.
Above this, CCKit implements an eicient, deadlock-free, and scalable design providing access to the full

address space while maintaining coherence invariants. There are two key implementation challenges: irst, how

ACM Trans. Comput. Syst.

10 • A. Ramdas et al.

to ensure that the protocol state machine is correct with regard to the processor’s implementation, and second,
how to saturate the achievable 20 GiB/s of the ECI link with acceptable FPGA resource consumption.

4.2 Correct protocol state machine generation

Implementing CCKit requires the full coherence protocol to be speciied and the DC state machine to be
correctly implemented. Here we provide a overview description of this process. Coherence protocols require the
maintenance of two invariants: single-writer-multiple-reader and data-value. In the scope of CCKit, the CPU
is allowed to perform both caching and non-caching operations but applications on the FPGA are restricted to
perform only coherent non-caching operations. This was done to simplify both the implemented protocol and
the applications themselves for evaluation. Since the CPU is the only entity that can have a modiied copy of a
cache line, the single-writer-multiple-reader invariant is maintained by default.
The CCPI speciication provides the list of coherence messages and information about common types of

transactions. We also collected traces of traic between two CPUs in order to observe the behavior of a correctly
implemented system. From these, we developed an abstract model of the system with the CPU, FPGA-DC, and
interconnect as entities. We also identiied rules of interaction between them when only a single cache line is
involved.

The irst step in generating a speciication is to identify the rules of interaction between the CPU and the DC
in the coherence protocol. The rules are as follows: First the CPU initiates a non-posted upgrade transaction by
issuing an upgrade request and waiting for a response from the DC. The upgrade request can be from any lower
state to any higher state (I to S, I to E or S to E). The DC is responsible for maintaining the coherence invariants
(by keeping track of home and remote states of the cache line in its directory) and responding to the request with
an acknowledgment. Second, the CPU can issue a posted voluntary downgrade transaction to downgrade from
any higher state to any lower state (E/M to S, E/M to I, S to I). Third, the DC can initiate a non-posted forward

downgrade transaction to request the CPU to downgrade from any higher state to any lower state. The CPU is
responsible for downgrading the state of the cache line and sending an acknowledgment. Fourth, a transaction
that has been initiated cannot be canceled and the protocol does not allow for negative acknowledgments. Finally,
this protocol uses timeouts to identify failures.
Next we look at the nature of the interconnect and how it afects coherence traic. First, the interconnect is

guaranteed to be deadlock free with separate virtual channel for diferent message-classes and non-interfering
low control. Second, the interconnect is reliable and guarantees delivery of messages: A sender does not have
to issue the same message multiple times. Third, the interconnect does not guarantee any ordering between
coherence messages: If there are n messages in transit, they can be received by the receiver in any of n! ways.
Fourth, the interconnect as a non-zero latency and delivery of messages is not instantaneous.

Most of the complexity of the coherence protocol is to handle conlicts that arise due to two reasons: the latency
of the interconnect and the reordering of coherence messages by the interconnect. To illustrate how latency of
interconnect can cause a conlict, consider the CPU evicting a cache line from its Last-Level Cache (LLC) by
posting a voluntary downgrade message. While the message is in transit, the DC can issue a forward downgrade
request which will be received by the CPU that does not have a copy of the cache line. Such conlict scenarios are
handled natively by the protocol through a special class of coherence messages called conlict responses. Next, to
illustrate how reordering can cause conlict, consider the scenario where, for a cache line, the CPU downgrades it
and immediately follows up with an upgrade request. If the messages are received out-of-order by the DC, it has
to contend with the conlict of CPU requesting a cache line that should already have been cached in the CPU.
The DC handles such conlicts by having intermediate states to keep track of out-of-order and in-light messages.

Using these rules of interaction, we can then build a model of the coherence protocol that can be used to
enumerate all possible coherence interactions that would have to be handled by the DC. We start by considering

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 11

Write Data Path

Read Data Path

ECI
ECI

Header

ECI

Local

Request

AXI Write

AXI Read

AXI Write

Response

AXI Read

Response

0

31

ECI

Header

Local

Response
0

31

0

31

0

31

0

31

0

31

Write

Header

Read

Header

DCU0

DCU31

DCU1

DCU2

DCU30

DCU29

Fig. 3. Directory controller slice.

only the subset of interactions where there are no conlicts. Given the initial state of the cache line in the CPU, we
can enumerate all possible pathways the interactions can take. For example, if the CPU has a cache line in invalid

state, there are only 3 possible pathways: The CPU continues to have the cache line in invalid state, or the CPU
issues an upgrade request to shared state (and wait for DC’s response), or the CPU issues an upgrade request to
exclusive. Each pathway is a coherence transaction and can be represented in the form of a state-equation which
contains the initial home and remote state of the cache line in DC’s directory, the sequence of messages received
by the DC, the inal home and remote state of the cache line, and the action to be performed by the DC.
Subsequently we broaden the set of coherence transactions by identifying conlict scenarios that arise due

to latency of interconnect. Given the model and rules of interaction, we can enumerate all possible conlict
coherence transactions and identify the action to be performed by the DC in each scenario. These coherence
transactions are also speciied as state-equations. Finally we account for reordering by interconnect by taking
existing state equations with n (>1) messages and creating n! new state-equations. This completes the set of
state-equations required to formally specify the coherence protocol.
CCKit uses state space exploration oline to generate a state machine with all possible intermediate states

from this speciication, ensuring that coherence invariants (SWMR and data-value invariant [74]) and deadlock
freedom are maintained, and optimizing for performance. Building a state machine for single-message coherence
transactions is trivial and requires only one transition rule. As the cardinality (number of messages) of a coherence
transaction increases, CCKit must reduce these transactions tomultiple smaller ones, eachwith only one coherence
event, introducing new intermediate states where necessary.

In principle, there is an intermediate state for every interleaving of in-light messages and cache states at both
nodes ś allowing CCKit to handle out-of-order responses and avoid serializing memory transactions. In many
cases groups of these theoretical states are indistinguishable at the DC and can be collapsed together, reducing
the state space to be explored.
In other cases, to avoid the state machine growing without bounds during state space exploration, it may be

necessary for the machine to stall coherence events for a line until outstanding transactions on the line have
completed ś equivalent to reordering the transaction into a previously known one. Stalling transaction responses

in this way can lead to deadlocks in the state machine, and so CCKit will only stall requests. CCKit’s state machine
on Enzian has 79 states with 304 transitions between them and handles 25 diferent coherence messages.

ACM Trans. Comput. Syst.

12 • A. Ramdas et al.

D
e
c
o

d
e
 &

S
c
h

e
d

u
le

Address

Forward Downgrade

Read/Upgrade Response

Current

State

Next

State

D
ire

c
to

ry

P
ro

to
c
o

l

R
O

M IO
 M

a
n

a
g

e
rE

n
c
o

d
e

Read/

Write

ECI

IO

Response

Local

Request

ECI

Local

Response

Invalidate Done

Event

IO

Fig. 4. Directory controller unit internals.

4.3 Achieving full performance

The ThunderX-1 cache controller is heavily pipelined and closely integrated with the cache itself, running at the
core clock frequency of 2 GHz. This is more than 6 times the typical FPGA clock of 322 MHz, requiring a tightly
optimized design on the FPGA side.
CCKit heavily exploits spatial parallelism to achieve the same throughput at lower clock speed, adopting a

design with many simple, non-pipelined units operating in parallel. An example CCKit DC coniguration uses
64 in-order Directory Controller Units (DCUs) (divided into odd and even Directory Controller Slices (DCSs))
to handle 24 GiB/s of traic (assuming an AXI-side latency of 300 ns). This is comfortably more than the 70 ns
DRAM latency (Figure 5), leaving plenty of overhead for memory-side application logic (e.g. materialized view in
ğ5.6).
Each DCU handles coherence for a disjoint subset of cache lines. Physical addresses are thus used to route

messages to a DCU. Depending on its type, a coherence message consists of one 64-bit header and up to 16
64-bit payload words. The header contains both the data needed to route to a DCU (address), and all information
(message type, dirty bits, etc.) relevant to the state machine.

As shown in Figure 3, header and payload are separated on ingress. The variable-length payload is stored in a
BRAM (embedded SRAM blocks) table indexed by DCU number and retrieved only when needed to generate a
write transaction on the user-facing AXI interface. Only the ixed-size header passes through the routing and
arbitration logic. The same separation occurs on the AXI response path (for reads) with the generated ECI header
attached to the payload only on egress. AXI transactions are tagged with DCU number to ensure correct routing
of responses.

Each DCU is serial and blocking: there is only one outstanding transaction of each read, write and coherence
transaction types, however other actions can be taken while the controller itself is blocked. Its serial nature
ensures faithfulness of the implementation to its protocol state machine: all steps for an event is completed before
the next event is chosen. To avoid resource deadlocks, the DCU never stalls waiting for a resource. Whenever an
event cannot be handled, it gets delayed and the DCU tries to handle a diferent event. Responses are prioritized
over requests as they may free up resources, but scheduling is otherwise round-robin. All achieved parallelism is
therefore from concurrent transactions on separate DCUs. This works for most workloads as long as the number
of DCUs per slice is chosen to avoid blocking for a sequential workload accessing each DCU in turn: other
workloads beneit from an XOR-based address scrambler in the CPU’s LLC designed to break up pathological
address patterns.
Figure 4 shows the internal architecture of a DCU, with the encoding/decoding interface to raw ECI on the

left, and the common AXI interface to user logic on the right. The DCU does not generate multi-phase AXI
transactions directly, but rather sends a single descriptor per operation and waits on the result. These descriptors

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 13

pass through an arbitration and routing stage analogous to that for ECI messages. At the AXI port the DCU ID is
translated to an AXI ID, allowing in-light transactions equal to the number of DCUs, which may complete out of
order. The DCUs neither assume nor guarantee any ordering on requests to diferent cache lines.

The directory and protocol ROM (generated from the high-level formal speciication in ğ4.2) together implement
the per-line coherence protocol. The ROM is indexed by the current state of a line (read from the directory) and
the requested operation, and contains the new line state plus any action (e.g. AXI read) required. The directory is
also scaled to give good utilization of FPGA resources, given the size of the CPU LLC whose state it tracks, with
the same associativity as the LLC to minimize unnecessary invalidation traic.

4.4 Resource usage and footprint

Table 1 shows resources used by diferent components and conigurations of CCKit with 64 DCUs. The irst two
lines show the individual resource consumption of the ECI transport layer and the DC. The remaining lines show
usage when the DC is conigured to access BRAM memory or of-chip DDR controllers (via Xilinx-provided
łMIGsž). Even with this full coniguration, CCKit leaves 70% of the FPGA resources for applications. While the
physical limitations of the FPGA does not allow for unlimited scaling, the newer FPGAs have grown signiicantly
(the VU19P has nearly 9 M CLBs versus the VU9P’s 2.5 M). Additionally, there is a trend to greater hardening of
critical infrastructure (e.g., memory controllers) to provide better performing and space eicient implementation.
Due to these trends, we expect an overall reduction in both relative and absolute usage of resources in the
implementation of CCKit.

Table 1. Resource Utilization Footprint on FPGA

Coniguration LUT (%) CLB (%) BRAM (%)

ECI 7.90 11.27 8.24
DC 6.86 12.16 5.93

ECI+DC+BRAMs 14.89 24.03 15.65
ECI+DC+MIGs 19.23 30.26 17.33

5 Evaluation & example applications

We present both micro-benchmarks and example applications to demonstrate that CCKit provides comparable
performance to the native CPU hardware, and that its lexibility and customization enables innovative features
beyond simple acceleration. The four diferent use-cases show CCKit can be used to explore acceleration models
enabled by both asymmetric and symmetric coherence. We focus on simpliied examples to highlight acceleration
patterns enabled by CCKit, rather than accelerating a complete application.

5.1 Experimental Setup

We microbenchmark CCKit on Enzian in two diferent conigurations, shown in Figure 5. In the DC+DDR

coniguration, the FPGA connects the AXI interface of each DCS to one 16 GiB DIMM with a standard Xilinx
DRAM controller IP (MIG) [106]. In DC+BRAM , we replace the DRAM with two 64 KiB BRAMs to isolate the
performance of the DC from that of the Xilinx DRAM IP.
As a baseline, we compare these with LLC+DDR, a 2-socket Gigabyte R150-T61 [44] server based on two

Marvell CN8890 ThunderX-1 CPUs connected by CCPI, the proprietary native coherence protocol on which ECI
is based. As with Enzian, the CPUs run at 2 GHz and each node has four 64 GiB DIMMS.
The round-trip latency and throughput igures in Figure 5 are the measured performance of the existing

hardware (for LLC+DDR), or the ECI implementation supplied with Enzian (for DC+DDR and DC+BRAM). The

ACM Trans. Comput. Syst.

14 • A. Ramdas et al.

DC

BRAM

FPGA

322MHz

19.6GiB/s

230ns

38.4GiB/s

3.1ns

CPU

CPU

2GHz

LLC

DRAM 2133

18.3GiB/s

200ns

58GiB/s

90ns

CPU

×4

FPGA

322MHz

DC

19.6GiB/s

230ns

33.2GiB/s

70ns

DRAM 2400

CPU

×2

LLC+DDR DC+DDR DC+BRAM

Fig. 5. DC configurations and the 2-CPU server.

DRAM and BRAM igures are likewise measured on the unmodiied base platform. These thus represent upper
bounds on the performance of CCKit’s DC as ixed parameters of the underlying platform. ECI shows 7% higher
throughput at 15% higher latency than the native 2-socket ThunderX-1 implementation.

5.2 DC read-write performance

While the supplied Enzian ECI implementation is comparable to the CPU’s own, the DC adds symmetric coherence
between the two sockets. In this section, we evaluate the performance after introducing the DC. For all three
conigurations in Figure 5, we measure throughput and latency for sequential and random reads and writes on a
contiguous 1 GiB region. As the ThunderX-1 LLC has no hardware prefetcher, both sequential and random read
throughput tests use prefetch hint instructions to avoid serializing on LLC reills.

Sequential
Read

Random
Read

Sequential
Write

Random
Write

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (G

iB
/s

)

Read and Write Throughput
2 x CPU system FPGA DC+BRAM FPGA DC+DDR

Fig. 6. CCKit DC performance vs. two-CPU system.

Figure 6 presents throughput for all combinations. Each bar is the mean of 100 runs, with (negligible) standard
deviation indicated. For DC+BRAM , sequential reads slightly exceed the baseline, showing that the distributed
DC is able to match the throughput of the CPU’s LLC at 1/6 the clock rate. Throughput drops signiicantly
once BRAM is replaced with DRAM. One potential cause is the known ineiciency of the Xilinx MIG IP under
non-sequential access patterns [106], interacting with the ThunderX-1 LLC address scrambler, transforming
sequential reads into a pseudo-random pattern. Fully random reads further stress the MIG’s scheduler and begin

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 15

Table 2. Sequential and Random Read Latency

Coniguration Seq. Read (ns) Rand. Read (ns)

LLC+DDR 268 271

DC+BRAM 454 444

DC+DDR 591 601

to cause contention on DCUs, leading to a moderate slowdown relative to sequential. Future improvement in the
Xilinx IP could reduce or eliminate this ineiciency.

Sequential and random writes perform similarly, and are broadly consistent with random reads. This is likely
due to ECI writeback messages to the DC being generated not in program order but by LLC evictions which
introduce additional randomness to the access order.
The overall trend is lower throughput as randomness increases, consistent with reduced utilization of DCUs,

compounded by the low non-sequential performance of the MIG IP. The bursty nature of write traic from the
ThunderX-1’s 3 KiB per-core write bufer likely also contributes to exceeding the in-light transaction capacity of
the DC. Increasing the number of outstanding transactions per DCU would improve performance for applications
with more random or write-heavy access patterns.

From a design perspective, non-sequential accesses can sufer because each DCU is non-pipelined to optimize
for resources. When a DCU is processing a coherence event, subsequent coherence events are blocked until the
operation completes. Therefore, best performance is achieved for a sequential workload where all DCUs are busy.
In a bursty workload, some DCUs might be idle while others might have multiple outstanding messages to be
handled. A sequential write workload is a sequential read exclusive into the CPU’s cache followed by a bursty
write as we do not have control over the order in which cache lines get evicted. Thus even with a BRAM, a drop
in performance is observed.

Table 2 shows the average round-trip latency of reads for all three conigurations. These are the average of 15
runs over the full 1 GiB, with one access per cache line and no prefetching to ensure serialization. Comparing
LLC+DDR with DC+DDR indicates that CCKit adds 323ś330 ns latency relative to the CPU, with the random
pattern 1ś2% slower. Comparing DC+BRAM with DC+DDR isolates the impact of the DC itself to 173ś186 ns,
with the remaining 137-157 ns due to the DRAM latency and the AXI interconnect. A write instruction commits
once it hits the write bufer, ergo it has the same latency characteristics as a read.
While DC performance can be further optimized, it already demonstrates that with careful design, CPU-

comparable performance can be achieved on FPGAs.

5.3 DC clean-invalidate performance

In addition to allowing the CPU to coherently cache FPGA-homed data, CCKit provides a request-acknowledge
interface so that FPGA applications can issue clean or clean-invalidate requests for FPGA-homed cache lines, and
wait until the operation completes. Both operations cause the writeback of an FPGA-homed cache line that is
dirty in the CPU’s LLC, with clean-invalidate additionally invalidating the CPU’s copy. Many use cases described
in this paper rely on these operations and so we evaluate their performance.

For both DC+BRAM and DC+DDR conigurations, the CPU irst reads 8 MiB of sequential data into its LLC in
shared (clean) state, which is then invalidated by an FPGA application via the DC. To measure the latency of a
single round-trip invalidation, the application issues one outstanding request to the DC at a time. To measure
throughput, the application issues as many requests at a time as possible and measures the time taken to invalidate
8 MiB of CPU-cached data. This throughput is higher than indicated by per-request latency due to beneits from
pipelining.

ACM Trans. Comput. Syst.

16 • A. Ramdas et al.

Table 3. Directory Controller Clean-Invalidate Performance

Coniguration Throughput (106 CL/s) Latency (ns)

Lower bound 150 ś
DC+BRAM 181 350
DC+DDR 230 350

Upper bound 322 ś

Throughput and latency are shown in Table 3. The latency of a single invalidate is the same in both cases
(350 ns) but throughput varies. The throughput is bounded above by the rate at which the application can issue
requests (1 per clock at 322 MHz), and below by the time needed to write back 8 MiB of dirty 128 B cache
lines at the measured ECI throughput of 20 GiB/s (≈ 150 × 106 CL/s). The computed throughput varies, as an
unpredictable fraction of the lines are voluntarily evicted by the CPU, in which case the DC completes immediately
without sending a message, but are in both cases solidly between the indicated bounds. We conclude that for any
application with a non-trivial fraction of dirty data in the CPU LLC, the FPGA-initiated invalidation rate will be
limited by the bandwidth available for dirty data writeback, and not the DC.

5.4 Concurrent shared data structures access

As a irst application use-case, we demonstrate how to use CCKit to enable threads on the CPU (host) and the
FPGA (device) to concurrently work on a shared data structure while maintaining coherence. This application is
used to demonstrate CCKit’s equilvalent of CXL.cache protocol or the ine-grained acceleration pattern enabled
by HARPv2 [19, 27, 29] but with the following distinctions. First, for simultaneous host and device access to device
memory, CXL 2.0’s assymmetric protocol requires an expensive round-trip interaction over the interconnect
for every single cache line access by the device to its own memory. Furthermore, CXL introduces a special
non-coherent bypass mode for mitigating this cost when the device memory is marked as non-accessible by the
host. In contrast, the symmetric nature of ECI initiates traic over the interconnect only when the cache line is
cached by the host, removing the need for a bypass mode irrespective of whether the device memory is marked
as shareable or not.

This example serves as the basis for for distributed computing applications like appbt [17] and for approximate
computing [56] where the data is modiied through the network directly on the FPGA while threads on the
CPU are also accessing the same data. The experiment also allows us to observe CCKit under contention and
demonstrate that it has the same performance characteristics as a conventional NUMA system with two CPUs
compared to e.g. HARP in which ine-grained co-processing is considered nearly impossible [27].
The shared data structure we use in this experiment is a table homed in FPGA BRAM. Each row is padded

to the cache line size of 128 B. The table has a size of 8 MiB (65536 rows). The CPU and FPGA concurrently
scan the table and increment the value of a counter at each row. The CPU always scans the full table, but we
vary the contention rate by limiting the FPGA to only access a part of the table. We run the experiment for 1 s
and measure the number of rows the CPU is able to process. For comparison we run the same workload on our
2-socket Gigabyte server. The memory for the shared table and the thread generating contention are pinned to
one of the NUMA nodes using Linux’s NUMA policy library. The thread that always scans the full table is the
same as in the CPU-FPGA case and is pinned to the other NUMA node. In both cases we warm the L2 cache on
the CPU where we perform the measurement.
The FPGA thread uses the locking variant of clean-invalidate. Once it is completed, cache line state in the

CPU’s LLC is invalid and the BRAM has the most up-to-date value for this cache line. The FPGA thread can
atomically read-modify-write this cache line before unlocking it.

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 17

0.0 0.2 0.4 0.6 0.8 1.0
Contended Fraction of Table

0

10

20

30

40

50

Th
ro

ug
hp

ut
 [m

ill
io

n
ro

w
s/

s] Coherent Table Access Throughput

CPU-FPGA
CPU-CPU

Fig. 7. Shared data access: CPU–CPU vs. CPU–FPGA.

Figure 7 shows the results. We plot the throughput of the thread that always scans the full table vs. the fraction
of the table that is accessed by the contending thread. Throughput is given in millions of rows per second (Mrps),
and we report average and standard deviation for 10 iterations. In the CPU-FPGA coniguration the CPU reaches
about 45.5 Mrps without contention. This gradually degrades to about 2.5 Mrps when the FPGA contends for the
entire table. In the CPU-CPU coniguration the respective numbers for the access thread are about 41 Mrps with
no contention and 5 Mrps with maximum contention.

We can see from the shape of the curves in Figure 7 that the CPU-FPGA setup using CCKit behaves very similarly
to a two socket server with the same CPU. The slightly lower performance of the CPU-FPGA coniguration is
explained by the latency that CCKit adds to migrating a cache line across the interconnect.

5.5 Application-specific prefetching

The second application showcases CCKit’s equivalent of CXL.mem protocol for memory expansion. In this use
case, we use the FPGA as a smart memory controller that expands the memory available to the host by providing
coherent access to device memory while adding new features. This is the basis for application-customized
memory controllers that provide support for special data types, memory traversal functions, or for exploring
memory-semantic SSDs [110] (prefetch data from storage to FPGA main memory) and near-storage FPGA
acceleration [48, 61]. We implement a sequential parallel prefetcher which increases the performance of any
accesses to the FPGA-homed in-memory data when multiple concurrent client threads read it sequentially. The
use case also illustrates the beneits of tailoring the memory subsystem behavior to speciic applications, their
access patterns, and how this can be tightly integrated with the coherence stack.

Using the DC+DDR coniguration, the prefetcher lies between the DC and FPGA-side DRAM, intercepting all
reads to tables that miss in the CPU LLC. To maximize performance, we implement multiple parallel prefetch
units, each of which can read data for diferent execution threads using on-chip BRAM to store blocks.

When an LLC miss occurs within the table, the prefetcher irst calculates the block address of the intercepted
cache line. It then assigns this request to an available prefetch unit which fetches the block from DRAM in a
series of 64-beat AXI burst transactions to maximize the available DRAM performance. To avoid unnecessary
overheads, prefetching is done in the background, and the intercepted cache line is served and returned to the
CPU with priority (i.e. hot line irst) through the existing direct path to DRAM. Additionally, when a sequential
read to the second half of a block is detected, another prefetch unit is preemptively allocated to get the next
block. This overlapping ensures that subsequent access to increasing ofsets is served with minimal delay. A
non-sequential read from a block that is not currently preloaded will be assigned to a free unit to start a new
prefetch operation.

ACM Trans. Comput. Syst.

18 • A. Ramdas et al.

1 t 2 t 3 t 4 t
Number of reading threads

0

5

10

15

20

Th
ro

ug
hp

ut
 [G

iB
/s

]

Prefetching performance

No prefetching
Prefetching

Fig. 8. Performance of the simple prefetcher.

Our experiment reads table rows sequentially from the FPGA’s DRAM. The prefetcher we conigure has eight
parallel blocks of 8 KiB each, which in total uses < 1% of the available BRAM resources. Overlapped operation
is suicient to sustain efective prefetching for the workloads of up to four concurrent clients. Figure 8 plots
throughput against the number of concurrent threads performing the read operation, compared to the performance
without the prefetcher. We see that the addition of the prefetcher signiicantly improves the sequential memory
access performance, nearing the DRAM’s optimal throughput.

5.6 Materialized database view maintenance

In the third use case, we demonstrate how CCKit enables non-traditional FPGA acceleration models that go
beyond the traditional models provided by PCI Express (PCIe) and CXL interconnects. We oload application
speciic coherence onto the FPGA transparently to software running on the CPU. We also use this application to
introduce the notion of application-speciic coherence protocols and how they can be built on top of standard
coherence protocol layers in CCKit.

Such an application could potentially be implemented with CXL 3.0’s back-invalidation snooping mechanism
but since CXL was not designed for customizing coherence protocols (for e.g. the device’s home agent still
resides across the interconnect on the CPU), it is unclear whether it is possible. Nevertheless, recent works on
near-data-processing [62], crash consistency [12], and disaggregated memory [22] propose such an interaction.
We oload view maintenance as used in a relational database to the FPGA and use coherence to ensure the

CPU always sees consistent data even as the base table is being modiied. Relational engines use views to provide
logical data independence: the ability to provide diferent data organizations over a common underlying schema.
Views can be virtual or materialized, meaning that the view corresponds to an actual table that is the result of
running the query deined in the view. Such materialized views are used for a range of purposes: access control,
simplifying query development, and performance optimization by pre-computing parts of common queries. Here,
we exploit the FPGA’s ability to control the CPU’s cache in an application-speciic manner, using the fact that
CCKit provides access to coherence protocol messages to trigger operations on the FPGA that handle expensive
view maintenance tasks the CPU would otherwise have to perform.

For the experiment, we use a table from the TPC-H benchmark, ORDERS, containing information about orders
placed by clients. This base table is append-only, and resides in the DRAM of the FPGA. The attributes of interest
are O_CUSTKEY (customer identiier) and O_TOTALPRICE (sale price), both stored as 64 b integers. The table is
coherently accessible from the CPU as normal, writable NUMA memory.
We deine a materialized view over the base table as follows: SELECT SUM(O_TOTALPRICE) FROM ORDERS

GROUP BY O_CUSTKEY ORDER BY O_CUSTKEY;. This view aggregates the total price of all orders by each customer,

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 19

0

200

400

600

800

1000

Vi
ew

 G
en

er
at

io
n

(
s)

1.69 2.2 5.06 16.49 62.4

245.52

881.21
Materialized View FPGA Performance

View Generation Time (s)
Throughput (GiB/s)

4 16 64 256 1024 4096 16000
Size of Source Table (KiB)

0

5

10

15

20

25

Th
ro

ug
hp

ut
(G

iB
/s

)

Fig. 9. View materialization performance.

sorting the result by customer key. The materialized view is stored in a second coherent address range backed by
FPGA BRAM.
The oloaded view maintenance (i.e. application protocol) works as follows. On the CPU side, transactions

update the base table with new orders. Each appends a tuple to the table by loading the next tuple location in
exclusive mode into the CPU cache and updating it. Upon transaction commit, a view maintenance operator
on the FPGA is triggered. This operator invalidates the CPU cache lines holding updated tuples and, as part
of the process, reads the data written back and updates both the base table and the materialized view with the
new aggregate calculations. From this point on the view table is consistent with the base table and can be read
freely. The CPU invokes the operator by issuing a read on a pre-deined synchronization address, signaling via
an invalidation message to run the FPGA’s view maintenance operator. Note that the CPU software is no longer
required to do any cache or synchronization operations (expensive lushes and fences) to keep two diferent
address spaces (the base and view tables) coherent with each other. The view-maintenance application protocol
built on top of CCKit’s DC does this transparently.
Figure 9 (view generation time) shows how long it takes the FPGA to update the base table and propagate

changes to the materialized view. We vary the number of updates (appends) per transaction on the base table
and measure the overall throughput observed over the interconnect. As the igure shows, the materialization
operator is bound by the interconnect bandwidth, with a response time linear in the base table size since the
view is recomputed by recalculating all aggregations. This could be optimized by computing only those that need
to be modiied and updating the corresponding entries in the materialized view.

This use case shows that CCKit enables the implementation of coherent applications that go beyond the usual
deinition of coherence, e.g. tying the coherence of multiple addresses related by a computed function.

5.7 Low-latency messaging

Lastly, we show that CCKit can be used to implement synchronous, low-latency message passing between
coherent agents. Here we build a simple blocking RPC interface between a CPU core and an accelerator on the

ACM Trans. Comput. Syst.

20 • A. Ramdas et al.

850 900 950 1000 1050 1100
Latency (ns)

0.00

0.25

0.50

0.75

1.00
RPC Latency Distribution

Fig. 10. Latency of CPU-FPGA RPC using CCKit.

FPGA. This permits the user to, for example, explore applications enabled by fully-symmetric protocols such as
CXL 3.0.
The quiescent state of the protocol, after a registration/initialisation phase, involves two cache lines. Both

caller (CPU) and callee (FPGA) hold one of these lines in exclusive state, ensuring that a copy exists only in its
own cache, and that it may be modiied without notiication (a silent upgrade). We label the CPU-held line � and
the FPGA-held line �.

The CPU begins by writing the RPC arguments to�, which completes locally without any coherence messages.
To signal to the FPGA that a request is ready, the CPU issues a load-exclusive request for � from software, by
writing to a reserved ield within it arranged to not overlap with the eventual RPC response. This generates
the corresponding interconnect message, which the FPGA receives. The CPU core will stall until this message
receives a response.
Knowing that � now holds RPC arguments, the FPGA issues its own load-exclusive for �. The CPU’s cache

responds by forwarding the line’s contents to the FPGA and invalidating its own copy. The FPGA now holds both
lines exclusively, and has the RPC arguments. The FPGA does not need to implement a full cache, and simply
uses a pair of registers to hold the content of both lines.

The CPUwill remain stalled, and the caller thus blocked, until the FPGA responds. In this way the user-speciied
RPC handler has full control over the protocol’s progress. The only limitation is any timeout mechanism on
the CPU, which on the ThunderX-1 is on the order of a second. The FPGA need only ensure it completes any
processing within this timeout, and everything will remain entirely transparent to software on the CPU.
Once the RPC is completed and its return value available, the FPGA writes this to � and replies to the CPU’s

stalled load-exclusive request. The RPC result thus ends in the CPU’s cache, with the caller unblocked and ready
to proceed.

The whole process required two interconnect roundtrips: the CPU’s (stalled) request for �, during which the
FPGA fetches �. Furthermore, the system is now back to its quiescent state, with each side holding one of the
lines in exclusive. The CPU now holds �, and the FPGA �. The next request is thus handled with the two lines
exchanging roles.

Figure 10 shows the CDF of end-to-end latencies we measure for a null RPC (the FPGA responds immediately).
The latency is extremely predictable and clustered tightly around the median of 930 ns. This corresponds to two
interconnect roundtrips. The observed outliers are due to misses in the L1 cache (the protocol itself operates on
the L2). Additional disruptions can occur due to the Linux scheduler.

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 21

This example protocol is fully serialising and thus limited by the roundtrip time to a bandwidth of around
200 MiB/s. If bandwidth, rather than latency, is the bottleneck for a particular application, the protocol is
straightforwardly extensible to transfer as many cache lines as desired in each exchange. Synchronisation still
occurs over a single pair of control lines (� and �), with payload lines sent irst and a barrier ensuring that
reordering does not afect correctness. A payload of 100 lines (or around 13 KiB) is suicient to saturate the
Enzian interconnect. These payload lines can also be used to batch requests.
As systems become increasingly power-limited, the cost of dedicating cores to speciic tasks (thus risking

under-utilisation) is decreasing over time. We have long since passed the point where it is eicient (or even
possible) to use all functional units on a processor simultaneously at full performance. For example, using the
AVX-512 vector units on an x86 processor generally causes the processor to automatically reduce its clockspeed
to avoid exceeding its maximum power rating [47]. It is not uncommon for even HPC workloads to actually
perform better using the older less-aggressive instruction sets thanks to the higher available clock speed.

It is moreover a common pattern in high-performance user-space IO stacks such as DPDK or SPDK to dedicate
a core to polling descriptor queues. The protocol described here improves on this by keeping the processor
pipeline stalled whenever the protocol is idle, giving it the opportunity to enter a sleep state.

Where multiple hardware execution contexts (e.g. hyperthreads) are available per core, a single core would be
able to coordinate multiple RPC transactions in parallel without increasing its power consumption. The limitation
here is the number of outstanding loads the core permits (i.e. the number and/or width of load-store units). This
suggests an interesting direction in architecture research for communication-limited workloads, an insight that
has also been explored for graph-processing architectures by Intel’s PIUMA design [1] and advocated for systems
more generally [51].

CCKit achieves this without any additional hardware, beyond the coherent CPU and accelerator, in contrast to
systems such as HyperPlane [72]. The protocol we present here also improves on state-of-the-art CPU-based
messaging protocols such as FastForward [43], as low-level access to the protocol permits the exchange in only
two interconnect round-trips, in a way which cannot easily be replicated in software.

6 Related Work

As discussed in ğ2, there is growing interest in new coherence models and associated applications. Researchers
have demonstrated the need for non-standard or even dynamically customized coherence protocols. For example,
Cohmeleon demonstrates that, for diferent types of accelerators, the best performing cache coherence protocol
varies at runtime [116]. Similarly, CoNDA demonstrates the beneits of iner-grained coherence, and proposes a
more customizable protocol to increase eiciency and performance [14].

FPGAs have been used to optimize a number of algorithms; many of these could greatly beneit from coherence
provided by CCKit. For example, FPGAs have been used to eiciently balance a tree data structure [114]. The
addition of cache coherence would allow for concurrent access during rebalancing without the need for external
signaling or explicit data transfers. Similarly, many features of Alibaba’s OLTP X-Engine [50] could beneit from
customizable cache coherence protocols, including operators explored in ğ5.

The movement towards data center disaggregation raises questions on how to handle the additional complexity
of new memory tiers. Both POND [66] and TPP [69] are built around CXL, but are primarily interested in the
near-NUMA latency of the interconnect and not coherence per se. However, others have demonstrated the utility
of ine-grained cache coherence in disaggregated systems [22, 63]. For example, MIND advocates a lexible
cache coherence protocol integrated into the network [63]. Clio argues that customizable, application-accessible
coherence is desirable in these systems for limiting coherence overhead [49].
CCKit can be used to prototype memory-semantic storage systems [110], currently only simulated by re-

searchers. Furthermore, cutting-edge memory semantic SSDs [110] do not have an FPGA on the data path, which

ACM Trans. Comput. Syst.

22 • A. Ramdas et al.

can be useful to accelerate near-storage data analytics [61] or oload memory management tasks which are
critical for inference in billion-parameter LLM models that do not it in main memory [4].

SmartNICs often employ FPGAs to accelerate common networking tasks such as RPC calls [60] or RDMA [90,
111]. These systems provide signiicant improvement, but the addition of coherence using techniques provided
by CCKit can provide added beneit. For example, in Dagger, coherence could allow the use of low-latency
synchronization primitives instead of complex application-level interactions [60]. StRoM, when ported to CCKit,
could enable RDMA atomic operations by directly manipulating the cache using customizable cache coherence.
Rambda proposes several architectural changes for acceleratingmemory-intensive applications which are centered
around accelerator coherence [111].

The RPC application of ğ5.7 has a lot in common with the concurrently-developed and published CC-NIC [88]
design. The CC-NIC authors have come to many of the same conclusions about the potential beneits of the
careful use of coherence traic for eicient message passing. Both it and our example build on the insights of
existing work such as FastForward [43] on fast coherence-based software message passing. In our example we
take one step beyond CC-NIC in using pipeline stalls as a hardware blocking mechanism, which is enabled by
the extremely ine-grained protocol control permitted by CCKit.
A complete discussion of cache coherence simulators is beyond the scope of this section (see [15] for a more

thorough discussion). Simulation tools [13, 53, 87] are essential for developing protocols and architectures. How-
ever, simulating a real application with these tools is incredibly slow, and often simulators trade of architectural
idelity and accuracy for speed [76]. To evaluate the low-level correctness of controllers and protocols, RTL
simulations are often necessary, requiring HDL descriptions of the CPU, interconnect, and accelerator which are
seldom available to researchers. Even if these models are available, cutting-edge cycle accurate simulators run in
the scale of kHz [37, 99], making the simulation of complex systems and applications under real workloads nearly
impossible. Synthesizing RISC-V cores on FPGAs running at ≈50 MHz [57, 109] allows for experimentation with
full system software stacks at interactive speeds, however it is limited to only a few out-of-order cores per FPGA.
CCKit complements these techniques by providing a real-world implementation that can faithfully interact

with not only real hardware (e.g. of-chip memory, accelerators) and software, but as a part of a networked or
rack-scale system.
Similarly, the generation of complex but correct coherence protocols, controllers, and NoCs, as discussed in

ğ2.3, is an important and active area of research, the a complete discussion is beyond the scope of this paper.
These systems are focused on the low-level architectural decisions when creating (sometimes heterogeneous)
SoCs. Many of the techniques used for generation are complimentary [18], however, the scope is signiicantly
diferent. CCKit aims to explore enterprise and cloud workloads requiring large server-class CPUs and commercial
accelerators/peripherals with the ability to expand to the rack scale.
Finally, FPGA shells [58, 59, 67, 112, 113] provide, to varying degrees, spatial and temporal multiplexing

of FPGA resources (including externally-attached memory) between applications implemented in user logic,
memory translation, and other services such as networking. All target PCIe-based accelerator cards, adopting a
DMA-based approach to acceleration, which rules out both the straightforward use of cache coherence between
FPGA and CPU, and the lexibility aforded to applications which have direct access to the coherence protocol.
CCKit rectiies this, as a potential component of an FPGA OS which implements cache coherence memory access
to both FPGA and CPU memory, and as a critical OS abstraction to make coherence protocols accessible to
developers of heterogeneous CPU-FPGA applications. It also exposes limitations of existing operating systems
when dealing with modern accelerators (ğ3.4).

ACM Trans. Comput. Syst.

CCKit: An open-source toolkit for cache coherent accelerators • 23

7 Conclusions

CCKit shows that experimenting with direct access to a real, native cache coherence protocol from FPGA-based
user applications is possible using open hardware available today. This fast, portable hardware interface to such
a protocol provides the functionality needed for interesting use-cases beyond simple coherence without exposing
the complexity of the underlying protocol. This work has been used to evaluate smartNICs [108] and novel
memory systems [103]. The whole of CCKit is publicly available as open source as will all the use-cases and
benchmarks in this paper 1. Even if CXL becomes the standard interconnect for accelerators, there remains a
long term need for observable and customizable tools for exploring coherence in large-scale systems.

References

[1] Sriram Aananthakrishnan, Nesreen K. Ahmed, Vincent Cave, Marcelo Cintra, Yigit Demir, Kristof Du Bois, Stijn Eyerman, Joshua B.

Fryman, Ivan Ganev, Wim Heirman, Hans-Christian Hoppe, Jason Howard, Ibrahim Hur, MidhunChandra Kodiyath, Samkit Jain,

Daniel S. Klowden, Marek M. Landowski, Laurent Montigny, Ankit More, Przemyslaw Ossowski, Robert Pawlowski, Nick Pepperling,

Fabrizio Petrini, Mariusz Sikora, Balasubramanian Seshasayee, Shaden Smith, Sebastian Szkoda, Sanjaya Tayal, Jesmin Jahan Tithi, Yves

Vandriessche, and Izajasz P. Wrosz. 2020. PIUMA: Programmable Integrated Uniied Memory Architecture. arXiv:2010.06277 [cs.AR]

[2] Reto Achermann, Nora Hossle, Lukas Humbel, Daniel David Schwyn, David A. Cock, and Timothy Roscoe. 2019. A Least-Privilege

Memory Protection Model for Modern Hardware. CoRR abs/1908.08707 (2019). arXiv:1908.08707 http://arxiv.org/abs/1908.08707

[3] Neha Agarwal, David Nellans, Eiman Ebrahimi, Thomas Wenisch, John Danskin, and Stephen Keckler. 2016. Selective GPU caches to

eliminate CPU-GPU HW cache coherence. 494ś506. doi:10.1109/HPCA.2016.7446089

[4] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho, Carlo C Del Mundo, Mohammad Rastegari, and

Mehrdad Farajtabar. 2024. LLM in a lash: Eicient Large Language Model Inference with Limited Memory. arXiv:2312.11514 [cs.CL]

[5] Johnathan Alsop, Matthew Sinclair, and Sarita Adve. 2018. Spandex: A Flexible Interface for Eicient Heterogeneous Coherence. In

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). 261ś274. doi:10.1109/ISCA.2018.00031

[6] Amazon Web Services. 2020. Amazon EC2 F1 Instances: Enable faster FPGA accelerator development and deployment in the cloud.

https://aws.amazon.com/ec2/instance-types/f1/.

[7] Jonathan Balkind, Ting-Jung Chang, Paul J. Jackson, Georgios Tziantzioulis, Ang Li, Fei Gao, Alexey Lavrov, Grigory Chirkov, Jinzheng

Tu, Mohammad Shahrad, and David Wentzlaf. 2020. OpenPiton at 5: A Nexus for Open and Agile Hardware Design. IEEE Micro 40, 4

(2020), 22ś31. doi:10.1109/MM.2020.2997706

[8] Jonathan Balkind, Katie Lim, Michael Schafner, Fei Gao, Grigory Chirkov, Ang Li, Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian

Zaruba, Kunal Gulati, Luca Benini, and David Wentzlaf. 2020. BYOC: A "Bring Your Own Core" Framework for Heterogeneous-

ISA Research. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and

Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 699ś714.

doi:10.1145/3373376.3378479

[9] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,

and Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09). ACM, New York, NY, USA, 29ś44.

doi:10.1145/1629575.1629579

[10] Noah Beck, Sean White, Milam Paraschou, and Samuel Nafziger. 2018. łZeppelinž: An SoC for multichip architectures. In 2018 IEEE

International Solid - State Circuits Conference - (ISSCC). 40ś42. doi:10.1109/ISSCC.2018.8310173

[11] Berkeley Architecture Research. 2022. TileLink. https://bar.eecs.berkeley.edu/projects/tilelink.html

[12] Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto Achermann, Gerd Zellweger, and Ryan Stutsman. 2022. Cache-Coherent Accelerators

for Persistent Memory Crash Consistency. In Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems (Virtual

Event) (HotStorage ’22). Association for Computing Machinery, New York, NY, USA, 37ś44. doi:10.1145/3538643.3539752

[13] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,

Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.

2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011), 1ś7. doi:10.1145/2024716.2024718

[14] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran

Hajinazar, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu. 2019. CoNDA: Eicient Cache Coherence Support for near-Data

Accelerators. In Proceedings of the 46th International Symposium on Computer Architecture. 629ś642.

[15] Hadi Brais, Rajshekar Kalayappan, and Preeti Ranjan Panda. 2020. A Survey of Cache Simulators. ACM Comput. Surv. 53, 1, Article 19

(Feb. 2020), 32 pages. doi:10.1145/3372393

1https://gitlab.inf.ethz.ch/project-openenzian

ACM Trans. Comput. Syst.

https://arxiv.org/abs/2010.06277
https://arxiv.org/abs/1908.08707
http://arxiv.org/abs/1908.08707
https://doi.org/10.1109/HPCA.2016.7446089
https://arxiv.org/abs/2312.11514
https://doi.org/10.1109/ISCA.2018.00031
https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1109/MM.2020.2997706
https://doi.org/10.1145/3373376.3378479
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1109/ISSCC.2018.8310173
https://bar.eecs.berkeley.edu/projects/tilelink.html
https://doi.org/10.1145/3538643.3539752
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3372393

24 • A. Ramdas et al.

[16] Richard Braun, Abishek Ramdas, Michal Friedman, and Gustavo Alonso. 2023. PLayer: Expanding Coherence Protocol Stack with a

Persistence Layer. In Proceedings of the 1st Workshop on Disruptive Memory Systems (Koblenz, Germany) (DIMES ’23). Association for

Computing Machinery, New York, NY, USA, 8ś15. doi:10.1145/3609308.3625270

[17] David Brooks and Margaret Martonosi. 1999. Implementing application-speciic cache-coherence protocols in conigurable hardware.

In International Workshop on Communication, Architecture, and Applications for Network-Based Parallel Computing. Springer, 181ś195.

[18] Anastasiia Butko, Albert Chen, David Donofrio, Farzad Fatollahi-Fard, and John Shalf. 2018. Open2C: Open-Source Generator for

Exploration of Coherent Cache Memory Subsystems. In Proceedings of the International Symposium on Memory Systems (Alexandria,

Virginia, USA) (MEMSYS ’18). Association for Computing Machinery, New York, NY, USA, 311ś317. doi:10.1145/3240302.3270314

[19] Anthony M. Cabrera and Roger D. Chamberlain. 2019. Exploring Portability and Performance of OpenCL FPGA Kernels on Intel

HARPv2. In Proceedings of the International Workshop on OpenCL (Boston, MA, USA) (IWOCL’19). Association for Computing Machinery,

New York, NY, USA, Article 3, 10 pages. doi:10.1145/3318170.3318180

[20] Irina Calciu, Jayneel Gandhi, Aasheesh Kolli, and Pratap Subrahmanyam. 2020. Using cache coherent FPGAs to accelerate remote

access. https://patents.google.com/patent/US10761984B2/en US Patent US10761984B2, Filed 2018-07-27, Issued 2020-09-01.

[21] Irina Calciu, Jayneel Gandhi, Aasheesh Kolli, and Pratap Subrahmanyam. 2020. Using cache coherent FPGAs to track dirty cache lines.

https://patents.google.com/patent/WO2020023791A1 Worldwide Patent WO2020023791A1, Filed 2018-07-25, Published 2020-01-30.

[22] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking

Software Runtimes for Disaggregated Memory. In Proceedings of the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). Association for Computing Machinery, New York, NY,

USA, 79ś92. doi:10.1145/3445814.3446713

[23] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel Gandhi, Onur Mutlu, and Pratap Subrahmanyam. 2019. Project

PBerry: FPGA Acceleration for Remote Memory. In Proceedings of the Workshop on Hot Topics in Operating Systems (Bertinoro, Italy)

(HotOS ’19). Association for Computing Machinery, New York, NY, USA, 127ś135. doi:10.1145/3317550.3321424

[24] Adrian M. Caulield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,

Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek

Chiou, and Doug Burger. 2016. A Cloud-Scale Acceleration Architecture. In The 49th Annual IEEE/ACM International Symposium on

Microarchitecture (Taipei, Taiwan) (MICRO-49). IEEE Press, Article 7, 13 pages.

[25] CCIX Consortium and others. 2019. Cache Coherent Interconnect for Accelerators (CCIX). http://www.ccixconsortium.com.

[26] Lucian M. Censier and Paul Feautrier. 1978. A New Solution to Coherence Problems in Multicache Systems. IEEE Trans. Comput. C-27,

12 (1978), 1112ś1118. doi:10.1109/TC.1978.1675013

[27] Xinyu Chen, Yao Chen, Ronak Bajaj, Jiong He, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2020. Is FPGA useful for hash joins?.

In CIDR.

[28] Jongsok Choi, Ruolong Lian, Zhi Li, Andrew Canis, and Jason Anderson. 2018. Accelerating Memcached on AWS Cloud FPGAs. In

Proceedings of the 9th International Symposium on Highly-Eicient Accelerators and Reconigurable Technologies (Toronto, ON, Canada)

(HEART 2018). Association for Computing Machinery, New York, NY, USA, Article 2, 8 pages. doi:10.1145/3241793.3241795

[29] Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, and Peng Wei. 2016. A Quantitative Analysis on

Microarchitectures of Modern CPU-FPGA Platforms. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC) (Austin, TX,

USA). IEEE Press, 1ś6. doi:10.1145/2897937.2897972

[30] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulield, Todd Massengill, Ming Liu, Mahdi Ghandi, Daniel

Lo, Steve Reinhardt, Shlomi Alkalay, Hari Angepat, Derek Chiou, Alessandro Forin, Doug Burger, Lisa Woods, Weisz Gabriel, Michael

Haselman, and Dan Zhang. 2018. Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro 38 (March 2018),

8ś20. https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/

[31] David Cock, Abishek Ramdas, Daniel Schwyn, Michael Giardino, Adam Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa

Licciardello, Kristina Martsenko, Reto Achermann, Gustavo Alonso, and Timothy Roscoe. 2022. Enzian: an open, general CPU/FPGA

platform for systems software research. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS 2022). Association for Computing Machinery, New York, NY, USA,

590ś607. doi:10.1145/3503222.3507742

[32] Henry Cook, Wesley Terpstra, and Yunsup Lee. 2017. Diplomatic Design Patterns: A TileLink Case Study. In First Workshop on Computer

Architecture Research with RISC-V (CARRV 2017).

[33] Intel Corporation. 2009. An introduction to the Intel Quickpath Interconnect. https://www.intel.com/content/www/us/en/io/quickpath-

technology/quick-path-interconnect-introduction-paper.html

[34] CXL Consortium. 2020. Compute Express Link. https://www.computeexpresslink.org/.

[35] CXL Consortium. 2020. CXL Webinar: Introduction to Compute Express Link (CXL). https://youtu.be/RpAshNmpqLQ?t=1856 See in

particular slide 14, time 30:58.

[36] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai, Austin Rovinski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao,

Steve Dai, et al. 2018. The Celerity open-source 511-core RISC-V tiered accelerator fabric: Fast architectures and design methodologies

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3609308.3625270
https://doi.org/10.1145/3240302.3270314
https://doi.org/10.1145/3318170.3318180
https://patents.google.com/patent/US10761984B2/en
https://patents.google.com/patent/WO2020023791A1
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/3317550.3321424
http://www.ccixconsortium.com
https://doi.org/10.1109/TC.1978.1675013
https://doi.org/10.1145/3241793.3241795
https://doi.org/10.1145/2897937.2897972
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://doi.org/10.1145/3503222.3507742
https://www.intel.com/content/www/us/en/io/quickpath- technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath- technology/quick-path-interconnect-introduction-paper.html
https://www.computeexpresslink.org/
https://youtu.be/RpAshNmpqLQ?t=1856

CCKit: An open-source toolkit for cache coherent accelerators • 25

for fast chips. IEEE Micro 38, 2 (2018), 30ś41. doi:10.1109/MM.2018.022071133

[37] Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Mohammad Sepehr Pourghannad, Ritik Raj, and James R Larus. 2023. Manticore:

Hardware-Accelerated RTL Simulation with Static Bulk-Synchronous Parallelism. arXiv preprint arXiv:2301.09413 (2023).

[38] Farzad Fatollahi-Fard, David Donofrio, George Michelogiannakis, and John Shalf. 2016. OpenSoC Fabric: On-chip network generator. In

2016 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 194ś203. doi:10.1109/ISPASS.2016.7482094

[39] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek

Bhanu, Adrian Caulield, Eric Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam,

Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,

Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert

Greenberg. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the 15th USENIX Conference on

Networked Systems Design and Implementation (Renton, WA, USA) (NSDI’18). USENIX Association, USA, 51ś64.

[40] Denis Foley and John Danskin. 2017. Ultra-Performance Pascal GPU and NVLink Interconnect. IEEE Micro 37, 2 (2017), 7ś17.

doi:10.1109/MM.2017.37

[41] Zexin Fu, Mingzi Wang, Yihai Zhang, and Zhangxi Tan. 2023. Cache Coherent Framework for RISC-V Many-core Systems. Seventh

Workshop on Computer Architecture Research with RISC-V (CARRV 2023) (June 2023). https://carrv.github.io/2023/papers/CARRV2023_

paper_3_Fu.pdf

[42] Gen-Z Consortium. 2020. Gen-Z Core Speciication 1.1. https://genzconsortium.org/.

[43] John Giacomoni, Tipp Moseley, and Manish Vachharajani. 2008. FastForward for Eicient Pipeline Parallelism: A Cache-Optimized

Concurrent Lock-Free Queue. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(Salt Lake City, UT, USA) (PPoPP ’08). Association for Computing Machinery, New York, NY, USA, 43ś52. doi:10.1145/1345206.1345215

[44] GIGA-BYTE Technology Co., Ltd. 2023. R150-T61 rev. 110) 2U ARM Rackmount Server. https://www.gigabyte.com/Enterprise/ARM-

Server/R150-T61-rev-110

[45] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. Accelerators and Coherence: An SoC Perspective. IEEE Micro 38, 6 (2018),

36ś45. doi:10.1109/MM.2018.2877288

[46] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. NoC-Based Support of Heterogeneous Cache-Coherence Models for

Accelerators. In 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS). 1ś8.

[47] Mathias Gottschlag, Tim Schmidt, and Frank Bellosa. 2020. AVX overhead proiling: how much does your fast code slow you down?.

In Proceedings of the 11th ACM SIGOPS Asia-Paciic Workshop on Systems (Tsukuba, Japan) (APSys ’20). Association for Computing

Machinery, New York, NY, USA, 59ś66. doi:10.1145/3409963.3410488

[48] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, andMyoungsoo Jung. 2022. Direct Access, High-Performance Memory Disaggregation

with DirectCXL. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 287ś294. https:

//www.usenix.org/conference/atc22/presentation/gouk

[49] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. 2022. Clio: A Hardware-Software Co-Designed Disaggregated

Memory System. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for Computing Machinery, New York, NY, USA, 417ś433.

doi:10.1145/3503222.3507762

[50] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang

Li. 2019. X-Engine: An Optimized Storage Engine for Large-Scale E-Commerce Transaction Processing. In Proceedings of the 2019

International Conference on Management of Data (SIGMOD ’19).

[51] Jack Tigar Humphries, Kostis Kafes, David Mazières, and Christos Kozyrakis. 2021. A Case against (Most) Context Switches. In

Proceedings of the Workshop on Hot Topics in Operating Systems (Ann Arbor, Michigan) (HotOS ’21). Association for Computing

Machinery, New York, NY, USA, 17ś25. doi:10.1145/3458336.3465274

[52] Intel. 2020. Intel Agilex FPGA Product Brief. https://www.intel.com/content/www/us/en/products/docs/programmable/agilex-fpga-

product-brief.html

[53] Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob. 2008. CMP $im: A Pin-based on-the-ly multi-core cache simulator. In

Proceedings of the Fourth Annual Workshop on Modeling, Benchmarking and Simulation (MoBS), co-located with ISCA. 28ś36.

[54] Junhyeok Jang, Hanjin Choi, Hanyeoreum Bae, Seungjun Lee, Miryeong Kwon, and Myoungsoo Jung. 2023. CXL-ANNS: Software-

Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search. In 2023

USENIX Annual Technical Conference (USENIX ATC 23). USENIX Association, Boston, MA, 585ś600. https://www.usenix.org/conference/

atc23/presentation/jang

[55] Norman P. Jouppi, Clif Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan

Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Cliford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jefrey Dean,

Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John

Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jafey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy

Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon

ACM Trans. Comput. Syst.

https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1109/ISPASS.2016.7482094
https://doi.org/10.1109/MM.2017.37
https://carrv.github.io/2023/papers/CARRV2023_paper_3_Fu.pdf
https://carrv.github.io/2023/papers/CARRV2023_paper_3_Fu.pdf
https://genzconsortium.org/
https://doi.org/10.1145/1345206.1345215
https://www.gigabyte.com/Enterprise/ARM-Server/R150-T61-rev-110
https://www.gigabyte.com/Enterprise/ARM-Server/R150-T61-rev-110
https://doi.org/10.1109/MM.2018.2877288
https://doi.org/10.1145/3409963.3410488
https://www.usenix.org/conference/atc22/presentation/gouk
https://www.usenix.org/conference/atc22/presentation/gouk
https://doi.org/10.1145/3503222.3507762
https://doi.org/10.1145/3458336.3465274
https://www.intel.com/content/www/us/en/products/docs/programmable/agilex-fpga-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/programmable/agilex-fpga-product-brief.html
https://www.usenix.org/conference/atc23/presentation/jang
https://www.usenix.org/conference/atc23/presentation/jang

26 • A. Ramdas et al.

MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,

Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory

Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick

Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of

a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture (Toronto, ON, Canada)

(ISCA ’17). Association for Computing Machinery, New York, NY, USA, 1ś12. doi:10.1145/3079856.3080246

[56] Henry Kao. 2020. Cache Coherence for Approximate Computing. University of Toronto (Canada).

[57] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin

Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanovic. 2018.

FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud. In 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA). 29ś42. doi:10.1109/ISCA.2018.00014

[58] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza, and Christopher J. Rossbach. 2018. Sharing, Protection,

and Compatibility for Reconigurable Fabric with AmorphOS. In Proceedings of the 13th USENIX Conference on Operating Systems

Design and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association, USA, 107ś127.

[59] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstractions make sense on FPGAs?. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20). USENIX Association, 991ś1010. https://www.usenix.org/conference/osdi20/

presentation/roscoe

[60] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou. 2021. Dagger: Eicient and Fast RPCs in Cloud

Microservices with near-Memory Reconigurable NICs. In Proceedings of the 26th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY,

USA, 36ś51. doi:10.1145/3445814.3446696

[61] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoorthy, Xiaodong Zhao, and Yang Seok Ki. 2020. SmartSSD: FPGA

Accelerated Near-Storage Data Analytics on SSD. IEEE Computer Architecture Letters 19, 2 (2020), 110ś113. doi:10.1109/LCA.2020.3009347

[62] Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux. 2024. Database Kernels: Seamless Integration of Database

Systems and Fast Storage via CXL. In 14th Conference on Innovative Data Systems Research, CIDR. 9ś12.

[63] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin Zhong, and Abhishek Bhattacharjee. 2021. MIND: In-Network

MemoryManagement for Disaggregated Data Centers. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles

(Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery, New York, NY, USA, 488ś504. doi:10.1145/3477132.3483561

[64] Ang Li, August Ning, and David Wentzlaf. 2023. Duet: Creating Harmony between Processors and Embedded FPGAs. In 2023 IEEE

International Symposium on High-Performance Computer Architecture (HPCA). 745ś758. doi:10.1109/HPCA56546.2023.10070989

[65] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R. Tallent, and Kevin J. Barker. 2020. Evaluating Modern GPU

Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect. IEEE Transactions on Parallel and Distributed Systems 31, 1 (2020),

94ś110. doi:10.1109/TPDS.2019.2928289

[66] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott

Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory Pooling Systems for

Cloud Platforms. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA,

574ś587. doi:10.1145/3575693.3578835

[67] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mulugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020.

A Hypervisor for Shared-Memory FPGA Platforms. In Proceedings of the Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New

York, NY, USA, 827ś844. doi:10.1145/3373376.3378482

[68] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph Zuckerman, Emilio G. Cota, Michele Petracca, Christian

Pilato, and Luca P. Carloni. 2020. Agile SoC Development with Open ESP. In Proceedings of the 39th International Conference on

Computer-Aided Design (Virtual Event, USA) (ICCAD ’20). Association for Computing Machinery, New York, NY, USA, Article 96,

9 pages. doi:10.1145/3400302.3415753

[69] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf

Chowdhury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-Enabled Tiered-Memory. In

Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems,

Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA, 742ś755. doi:10.1145/

3582016.3582063

[70] Microsoft Azure. 2023. Microsoft Azure Boost. https://learn.microsoft.com/en-us/azure/azure-boost/overview.

[71] Seung Won Min, Sitao Huang, Mohamed El-Hadedy, Jinjun Xiong, Deming Chen, and Wen-mei Hwu. 2019. Analysis and Optimization

of I/O Cache Coherency Strategies for SoC-FPGA Device. In 2019 29th International Conference on Field Programmable Logic and

Applications (FPL). 301ś306. doi:10.1109/FPL.2019.00055

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/ISCA.2018.00014
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1145/3445814.3446696
https://doi.org/10.1109/LCA.2020.3009347
https://doi.org/10.1145/3477132.3483561
https://doi.org/10.1109/HPCA56546.2023.10070989
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3373376.3378482
https://doi.org/10.1145/3400302.3415753
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1145/3582016.3582063
https://learn.microsoft.com/en-us/azure/azure-boost/overview
https://doi.org/10.1109/FPL.2019.00055

CCKit: An open-source toolkit for cache coherent accelerators • 27

[72] Amirhossein Mirhosseini, Hossein Golestani, and Thomas F. Wenisch. 2020. HyperPlane: A Scalable Low-Latency Notiication

Accelerator for Software Data Planes. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 852ś867.

doi:10.1109/MICRO50266.2020.00074

[73] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2020. A Primer on Memory Consistency and Cache Coherence (second

ed.). Springer CHAM. https://doi.org/10.1007/978-3-031-01764-3

[74] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2020. A Primer on Memory Consistency and Cache Coherence: Second

Edition. Morgan and Claypool.

[75] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable Parallel Programming with CUDA: Is CUDA the Parallel

ProgrammingModel That Application Developers Have BeenWaiting For? Queue 6, 2 (March 2008), 40ś53. doi:10.1145/1365490.1365500

[76] Tony Nowatzki, Jaikrishnan Menon, Chen-Han Ho, and Karthikeyan Sankaralingam. 2015. Architectural Simulators Considered

Harmful. IEEE Micro 35, 6 (2015), 4ś12. doi:10.1109/MM.2015.74

[77] Neal Oliver, Rahul R. Sharma, Stephen Chang, Bhushan Chitlur, Elkin Garcia, Joseph Grecco, Aaron Grier, Nelson Ijih, Yaping Liu,

Pratik Marolia, Henry Mitchel, Suchit Subhaschandra, Arthur Sheiman, Tim Whisonant, and Prabhat Gupta. 2011. A Reconigurable

Computing System Based on a Cache-Coherent Fabric. In Proceedings of the 2011 International Conference on Reconigurable Computing

and FPGAs (RECONFIG ’11). IEEE Computer Society, USA, 80ś85. doi:10.1109/ReConFig.2011.4

[78] Lena E. Olson, Mark D. Hill, and David A. Wood. 2017. Crossing Guard: Mediating Host-Accelerator Coherence Interactions. SIGARCH

Comput. Archit. News 45, 1 (April 2017), 163ś176. doi:10.1145/3093337.3037715

[79] Tarikul Islam Papon, Ju Hyoung Mun, Shahin Roozkhosh, Denis Hoornaert, Ahmed Sanaullah, Ulrich Drepper, Renato Mancuso,

and Manos Athanassoulis. 2023. Relational Fabric: Transparent Data Transformation. In 2023 IEEE International Conference on Data

Engineering (ICDE). Anaheim, California, USA.

[80] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, Paul Gao, Chun Zhao, Zahra Azad, Sadullah Canakci,

Bandhav Veluri, Tavio Guarino, Ajay Joshi, Mark Oskin, and Michael Bedford Taylor. 2020. BlackParrot: An Agile Open-Source RISC-V

Multicore for Accelerator SoCs. IEEE Micro 40, 4 (2020), 93ś102. doi:10.1109/MM.2020.2996145

[81] Andrew Putnam, Adrian M. Caulield, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy

Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka,

James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconigurable Fabric for

Accelerating Large-Scale Datacenter Services. SIGARCH Comput. Archit. News 42, 3 (June 2014), 13ś24. doi:10.1145/2678373.2665678

[82] Marjan Radi, Wesley W. Terpstra, Paul Loewenstein, and Dejan Vucinic. 2019. OmniXtend: Direct to Caches Over Commodity Fabric.

In 2019 IEEE Symposium on High-Performance Interconnects (HOTI). 59ś62. doi:10.1109/HOTI.2019.00027

[83] Parthasarathy Ranganathan, Daniel Stodolsky, Jef Calow, Jeremy Dorfman, Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela,

Raghu Balasubramanian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Niranjani Dasharathi, Jia Feng, Brian Fosco,

Samuel Foss, Ben Gelb, Sara J. Gwin, Yoshiaki Hase, Da-ke He, C. Richard Ho, Roy W. Hufman Jr., Elisha Indupalli, Indira Jayaram,

Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou, Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Mahony,

David Alexander Munday, Srikanth Muroor, Narayana Penukonda, Eric Perkins-Argueta, Devin Persaud, Alex Ramirez, Ville-Mikko

Rautio, Yolanda Ripley, Amir Salek, Sathish Sekar, Sergey N. Sokolov, Rob Springer, Don Stark, Mercedes Tan, Mark S. Wachsler,

Andrew C. Walton, David A. Wickeraad, Alvin Wijaya, and Hon Kwan Wu. 2021. Warehouse-Scale Video Acceleration: Co-Design and

Deployment in the Wild. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages

and Operating Systems. Association for Computing Machinery, New York, NY, USA, 600ś615. https://doi.org/10.1145/3445814.3446723

[84] C Ravishanicar and James R Goodman. 1983. Cache implementation for multiple microprocessors. In Proceedings of the 26th IEEE

Computer Society International Conference (COMCON).

[85] Steven K. Reinhardt, Robert W. Pile, and David A. Wood. 1996. Decoupled Hardware Support for Distributed Shared Memory.

In Proceedings of the 23rd Annual International Symposium on Computer Architecture (Philadelphia, Pennsylvania, USA) (ISCA ’96).

Association for Computing Machinery, New York, NY, USA, 34ś43. doi:10.1145/232973.232979

[86] Xiaowei Ren, Daniel Lustig, Evgeny Bolotin, Aamer Jaleel, Oreste Villa, and David Nellans. 2020. HMG: Extending Cache Coherence

Protocols Across Modern Hierarchical Multi-GPU Systems. In 2020 IEEE International Symposium on High Performance Computer

Architecture (HPCA). 582ś595. doi:10.1109/HPCA47549.2020.00054

[87] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Microarchitectural Simulation of Thousand-Core Systems.

In Proceedings of the 40th Annual International Symposium on Computer Architecture (Tel-Aviv, Israel) (ISCA ’13). Association for

Computing Machinery, New York, NY, USA, 475ś486. doi:10.1145/2485922.2485963

[88] Henry N. Schuh, Arvind Krishnamurthy, David Culler, Henry M. Levy, Luigi Rizzo, Samira Khan, and Brent E. Stephens. 2024. CC-NIC:

a Cache-Coherent Interface to the NIC. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machinery, New York, NY,

USA, 52ś68. doi:10.1145/3617232.3624868

[89] Debendra Das Sharma and Ishwar Agarwal. 2022. Compute Express Link 3.0 Standard. Technical Report.

ACM Trans. Comput. Syst.

https://doi.org/10.1109/MICRO50266.2020.00074
https://doi.org/10.1007/978-3-031-01764-3
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1109/MM.2015.74
https://doi.org/10.1109/ReConFig.2011.4
https://doi.org/10.1145/3093337.3037715
https://doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1109/HOTI.2019.00027
https://doi.org/10.1145/3445814.3446723
https://doi.org/10.1145/232973.232979
https://doi.org/10.1109/HPCA47549.2020.00054
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/3617232.3624868

28 • A. Ramdas et al.

[90] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso. 2020. StRoM: Smart Remote Memory. In Proceedings of

the Fifteenth European Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New

York, NY, USA, Article 29, 16 pages. doi:10.1145/3342195.3387519

[91] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel programming standard for heterogeneous computing systems.

Computing in science & engineering 12, 3 (2010), 66.

[92] Jefrey Stuecheli, Bart Blaner, CR Johns, and MS Siegel. 2015. CAPI: A Coherent Accelerator Processor Interface. IBM Journal of

Research and Development 59, 1 (2015), 7:1ś7:7. doi:10.1147/JRD.2014.2380198

[93] J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner, C. Wollbrink, and B. Allison. 2018. IBM POWER9 Opens

up a New Era of Acceleration Enablement: OpenCAPI. IBM Journal of Research and Development 62, 4ś5 (July 2018), 8:1ś8:8.

doi:10.1147/JRD.2018.2856978

[94] Sajjad Tamimi, Florian Stock, Andreas Koch, Arthur Bernhardt, and Ilia Petrov. 2022. An Evaluation of Using CCIX for Cache-Coherent

Host-FPGA Interfacing. In 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM).

[95] C. K. Tang. 1976. Cache System Design in the Tightly Coupled Multiprocessor System. Association for Computing Machinery, New

York, NY, USA. doi:10.1145/1499799.1499901

[96] Wesley W Terpstra. 2017. TileLink: A free and open-source, high-performance scalable cache-coherent fabric designed for RISC-V. In

Proc. 7th RISC-V Workshop.

[97] The Enzian Project. 2024. Enzian. https://enzian.systems/

[98] Neil C. Thompson and Svenja Spanuth. 2021. The Decline of Computers as a General Purpose Technology. Commun. ACM 64, 3 (Feb.

2021), 64ś72. doi:10.1145/3430936

[99] Verilator. [n. d.]. Verilator RTL Simulator. https://veripool.org/verilator/documentation/

[100] Tianrui Wei, Nazerke Turtayeva, Marcelo Orenes-Vera, Omkar Lonkar, and Jonathan Balkind. 2023. Cohort: Software-Oriented

Acceleration for Heterogeneous SoCs. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York,

NY, USA, 105ś117. doi:10.1145/3582016.3582059

[101] Ying Wei, Yi Chieh Huang, Haiming Tang, Nithya Sankaran, Ish Chadha, Dai Dai, Olakanmi Oluwole, Vishnu Balan, and Edward Lee.

2023. 9.3 NVLink-C2C: A Coherent Of Package Chip-to-Chip Interconnect with 40Gbps/pin Single-ended Signaling. In 2023 IEEE

International Solid-State Circuits Conference (ISSCC). 160ś162. doi:10.1109/ISSCC42615.2023.10067395

[102] Gabriel Weisz, Joseph Melber, Yu Wang, Kermin Fleming, Eriko Nurvitadhi, and James C. Hoe. 2016. A Study of Pointer-Chasing

Performance on Shared-Memory Processor-FPGA Systems. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA ’16).

[103] Xiaoxiang Wu, Baptiste Lepers, and Willy Zwaenepoel. 2025. Pre-Stores: Proactive Software-guided Movement of Data Down the

Memory Hierarchy. In Proceedings of the Twentieth European Conference on Computer Systems (Rotterdam, Netherlands) (EuroSys ’25).

Association for Computing Machinery, New York, NY, USA, 1161ś1176. doi:10.1145/3689031.3696097

[104] Mark Wyse, Daniel Petrisko, Farzam Gilani, Yuan-Mao Chueh, Paul Gao, Dai Cheol Jung, Sripathi Muralitharan, Shashank Vijaya

Ranga, Mark Oskin, and Michael Taylor. 2022. The BlackParrot BedRock Cache Coherence System. arXiv:2211.06390 [cs.AR]

[105] Xilinx. 2021. UltraScale Architecture and Product Data Sheet: Overview. https://www.xilinx.com/support/documentation/data_sheets/

ds890-ultrascale-overview.pdf. DS890 (v4.0).

[106] Xilinx. 2022. UltraScale Architecture-Based FPGAs Memory IP (PG150). Technical Report.

[107] Xilinx. 2022. Xilinx Zynq Ultrascale+ MPSoC. https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

[108] Pengcheng Xu and Timothy Roscoe. 2025. The NIC should be part of the OS. In Proceedings of the 2025 Workshop on Hot Topics in

Operating Systems (Banf, AB, Canada) (HotOS ’25). Association for Computing Machinery, New York, NY, USA, 151ś157. doi:10.1145/

3713082.3730388

[109] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin, Qianruo Li, Xin Li, Zuojun Li, Jiawei Lin, Tong Liu,

Zhigang Liu, Jiazhan Tan, Huaqiang Wang, Huizhe Wang, Kaifan Wang, Chuanqi Zhang, Fawang Zhang, Linjuan Zhang, Zifei

Zhang, Yangyang Zhao, Yaoyang Zhou, Yike Zhou, Jiangrui Zou, Ye Cai, Dandan Huan, Zusong Li, Jiye Zhao, Zihao Chen, Wei

He, Qiyuan Quan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun, and Yungang Bao. 2022. Towards Developing High Performance

RISC-V Processors Using Agile Methodology. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). 1178ś1199.

doi:10.1109/MICRO56248.2022.00080

[110] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin yong Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S.

Kim. 2023. Overcoming the Memory Wall with CXL-Enabled SSDs. In 2023 USENIX Annual Technical Conference (USENIX ATC 23).

USENIX Association, Boston, MA, 601ś617. https://www.usenix.org/conference/atc23/presentation/yang-shao-peng

[111] Yifan Yuan, Jinghan Huang, Yan Sun, Tianchen Wang, Jacob Nelson, Dan R. K. Ports, Yipeng Wang, Ren Wang, Charlie Tai, and

Nam Sung Kim. 2023. Rambda: RDMA-driven Acceleration Framework for Memory-intensive �s-scale Datacenter Applications. In 2023

IEEE International Symposium on High-Performance Computer Architecture (HPCA). 499ś515. doi:10.1109/HPCA56546.2023.10071127

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3342195.3387519
https://doi.org/10.1147/JRD.2014.2380198
https://doi.org/10.1147/JRD.2018.2856978
https://doi.org/10.1145/1499799.1499901
https://enzian.systems/
https://doi.org/10.1145/3430936
https://veripool.org/verilator/documentation/
https://doi.org/10.1145/3582016.3582059
https://doi.org/10.1109/ISSCC42615.2023.10067395
https://doi.org/10.1145/3689031.3696097
https://arxiv.org/abs/2211.06390
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://doi.org/10.1145/3713082.3730388
https://doi.org/10.1145/3713082.3730388
https://doi.org/10.1109/MICRO56248.2022.00080
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
https://doi.org/10.1109/HPCA56546.2023.10071127

CCKit: An open-source toolkit for cache coherent accelerators • 29

[112] Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the Cloud. In Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for ComputingMachinery,

New York, NY, USA, 845ś858. doi:10.1145/3373376.3378491

[113] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu, Bojie Li, Peng Cheng, Guo Chen, and Thomas Moscibroda. 2017. The Feniks

FPGA Operating System for Cloud Computing. In Proceedings of the 8th Asia-Paciic Workshop on Systems (Mumbai, India) (APSys ’17).

Association for Computing Machinery, New York, NY, USA, Article 22, 7 pages. doi:10.1145/3124680.3124743

[114] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu, Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng He, Feifei Li, Wei Cao,

Zhongdong Huang, and Jianling Sun. 2020. FPGA-Accelerated Compactions for LSM-based Key-Value Store. In 18th USENIX Conference

on File and Storage Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020.

[115] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao,

Haowei Lu, Sundaram Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole Jean Wu, Christos Kozyrakis, and Parik Pol.

2022. Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training. In ISCA 2022 - Proceedings of

the 49th Annual International Symposium on Computer Architecture (Proceedings - International Symposium on Computer Architecture).

IEEE, 1042ś1057. doi:10.1145/3470496.3533044

[116] Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni. 2021. Cohmeleon: Learning-Based Orchestration

of Accelerator Coherence in Heterogeneous SoCs. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture

(Virtual Event, Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA, 350ś365. doi:10.1145/3466752.3480065

Received 6 August 2024; revised 28 July 2025; accepted 16 August 2025

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3373376.3378491
https://doi.org/10.1145/3124680.3124743
https://doi.org/10.1145/3470496.3533044
https://doi.org/10.1145/3466752.3480065

	Abstract
	1 Introduction
	2 Background
	2.1 Symmetric vs. asymmetric protocols
	2.2 Accelerators and coherent interconnects
	2.3 Coherence in MPSoCs

	3 Approach and Design
	3.1 Target platforms and assumptions
	3.2 High-level architecture
	3.3 FPGA-side interface
	3.4 CPU-side interface

	4 Implementation Details
	4.1 Underlying hardware coherence protocol
	4.2 Correct protocol state machine generation
	4.3 Achieving full performance
	4.4 Resource usage and footprint

	5 Evaluation & example applications
	5.1 Experimental Setup
	5.2 DC read-write performance
	5.3 DC clean-invalidate performance
	5.4 Concurrent shared data structures access
	5.5 Application-specific prefetching
	5.6 Materialized database view maintenance
	5.7 Low-latency messaging

	6 Related Work
	7 Conclusions
	References

