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Modern computer server systems are increasingly managed at a low level by baseboard management con-
trollers (BMCs). BMCs are processors with access to the most critical parts of the platform, below the level
of OS or hypervisor, including control over power delivery to every system component. Buggy or poorly de-
signed BMC software not only poses a security threat to a machine, it can permanently render the hardware
inoperative. Despite this, there is little published work on how to rigorously engineer the power management
functionality of BMCs so as to prevent this happening.

This article takes a first step toward putting BMC software on a sound footing by specifying the hard-
ware environment and the constraints necessary for safe and correct operation. This is best accomplished
through automation: correct-by-construction power control sequences can be efficiently generated from a
simple, trustworthy model of the platform’s power tree that incorporates the sequencing requirements and
safe voltage ranges of all components.

We present both a modeling language for complex power-delivery networks and a tool to automatically
generate safe, efficient power sequences for complex modern platforms. This not only increases the trust-
worthiness of a hitherto opaque yet critical element of platform firmware: regulator and chip power mod-
els are significantly simpler to produce than hand-written power sequences. This, combined with model
reuse for common components, reduces both time and cost associated with platform bring-up for new
hardware.

We evaluate our tool using a new high-performance 2-socket server platform with >100W per socket TDP,
tight voltage limits and 25 distinct power regulators needing configuration, showing both fast (<10s) tool
runtime, and correct power sequencing of a live system.
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1 INTRODUCTION

In this article, we present a novel solution to a surprisingly subtle problem: how to turn on a
computer.

It goes without saying that modern computer server systems are enormously complex. How-
ever, less well-known is the software complexity that is never visible to the operating system or
firmware running on the CPU. Almost all modern servers today include hidden processors, known
as baseboard management controllers (BMCs), whose purpose is to control power and clock distri-
bution to every major component on the main server board. These processors are often powerful
enough to run a full operating system themselves, such as Linux or Minix [44].

Almost no attention has been paid in the research community to rigorously engineering the
software for BMCs despite the fact that a BMC has almost complete control over the server, is
usually connected to the network, and runs completely independently of any OS, hypervisor, or
firmware on the main CPU. While some open-source implementations of BMC software exist (such
as OpenBMC [13]), for the most part development and deployment of this software is invisible to
users, developers, and the research community.

This raises a number of serious issues. First, incorrect behavior of the BMC in controlling volt-
ages on the board can render the hardware permanently unusable, essentially destroying the board.
This, in turn, means that developing and validating such software for a new board is a cautious,
time-consuming process.

Secondly, security holes in BMC software can be catastrophic [27, 41]. Since the BMC is inde-
pendent of the main processor cores, and is connected to every major component via, for example,
an I2C network, a compromise of this code can result in almost undetectable threats to the system.

We encountered the first problem ourselves in the process of bringing up BMC software for a
new, large, server-class board intended for research, and the work in this article was driven by that
experience as well as numerous 3rd-party accounts of BMC-related problems.

Our aim is to create a rigorous foundation for engineering board control software that gives OS
and firmware developers assurance that the underlying hardware can be trusted to behave as ad-
vertised. This is an ambitious goal, but the first step is to define the BMC’s hardware environment
and the constraints that capture the machine’s “safe operation”.

Our focus here is not on security but on complexity and correctness. We start by modeling the
power trees of server machines and using these models to synthesize power-on sequences for the
server given a specification of the desired powered-up state of the system.

The state of the art approach, as illustrated by publicly-available systems such as OpenBMC,
is hand-written sequences derived from schematics and datasheets. In this article we improve on
this in the following ways:

• Identifying that platform description is a problem of declarative specification, and can (and
should) be separate to the mechanism of generating imperative sequences.
• Recognizing that the important features of power tree nodes (e.g. regulators) are consistent

across a wide range of components and topologies, allowing any system to be specified with
a small set of universal primitives, expressed as a declarative specification language.
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• Illustrating that the sequence generation mechanism maps well onto a well-known and
widely-studied technique (constraint satisfaction problem (CSP)), with existing mature tools.
• Demonstrating that this implementation scales efficiently to the largest, most complex system

we could find, and works on real production hardware.

The benefits of the approach we describe are allowing the engineer to separate “what their plat-
form looks like” from “how it is controlled” allowing firstly a division of labor, and more significantly
the opportunity to delegate the mechanical, time-consuming, and error-prone second problem to a
mature, well-studied, and high-performance algorithm. This promises to reduce not only the time
needed to derive a sequence for new hardware, but the maintenance effort as hardware evolves.
In the end, we get both the correct sequence and the reasons (often buried in datasheets) why the
sequence is the way it is.

2 BACKGROUND

We start by surveying the power sequencing problem, and how it has become so complex.
In the past, it was enough to use careful circuit design to power on a system which needed only

a single 5 V or 3.3 V power rail, supplied directly from an AT or ATX power supply. As processor
frequencies increased, however, the supply voltage decreased: because the power consumed by a
CPU can be approximated by PCPU ∝ V 2 · f where V is voltage and f is clock frequency, the
increased frequency of processors necessitated a decrease in voltage in order to keep power bud-
gets reasonable. To obtain these lower voltages, step-down regulators take an input voltage from a
power supply, and step it down to a stable voltage appropriate for the consuming device.

As boards become more complex, this leads to the situation in modern computing platforms
where power and clock management is not a trivial matter, and the platform consists of numerous
power and clock domains. For example, an AMD Zen processor requires three separate voltage
domains (VDDCPU, VDDIO, and VDDSOC) [5], in some cases drawing hundreds of amps. Each
channel of DDR4 memory requires two different voltages (1.2 V VDD and 2.5 V VP P ) [24]. This
means that for a two-socket system, each with two channels of DDR DRAM, a minimum of 14
different voltage regulators are needed to supply the necessary voltages, not to mention the needs
of storage, networking, and accelerators. These devices each rely on a tree of regulators, each
supplying voltage within a safe range, often needing to be supplied and activated in a specific
order during the bring-up process. An example of a modern power tree is shown as Figure 1.

As most voltage regulators are able to accept ranges of input voltages and, depending on con-
figuration, produce a range of output voltages, getting a correct configuration is critical. Miscon-
figuration of voltage levels is an obvious source of failure, but there are additional failure modes
associated with power electronics. Latch-up is one such failure mode that can occur due to in-
correct power sequencing, when the input to a CMOS device is greater than VDD, causing a low
impedance path that can cause the circuit to malfunction or be destroyed completely [23]. As
the number of transistors increases and their size decreases the danger of latch-up and other se-
quencing failures increases [12]. Borderline power and clock levels can be exploited as security
vulnerabilities [28, 39].

In order to deal with these more complex requirements, several solutions have been developed,
beginning with specialized hardware for power sequencing [7, 18]. These integrated circuits, once
configured, are reliable and inexpensive but still require configuration with the correct sequence
when the platform is manufactured. Moreover, system designers, especially with an eye on the data
center, demand more complete and configurable board management than simple power sequenc-
ing, such as monitoring and remote management, which is beyond the capabilities of hardware
regulator controllers.
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Fig. 1. The power tree of a modern two socket server system contains dozens of regulators, illustrated here

with the one for Enzian. Individual regulators are shown in white boxes and their control signals are in blue

with red dotted lines. The black lines connecting boxes are supplied voltages and the orange boxes are end

consumers of one or more power sources. The blue highlighted region is used as an example for the remainder

of this article.

This, coupled with the need to orchestrate increasing numbers of regulators via software over
networks such as low-speed serial buses (e.g. Inter-Integrated Circuit (I2C)) leads ultimately to
modern servers using a BMC as a complete platform management system. The BMC includes NIC
drivers and network protocols in addition to controlling power regulators, and typically runs a
complete OS.

Narayanan et al. argue that the resulting inherent complexity of the firmware code routinely
introduces bugs and vulnerabilities [26]. The general state of firmware running on BMCs, as much
as is public, is at odds with the high level of privilege with which it executes [4]. This includes
the critical parts dedicated to power and clock management. In 2018, the National Institute of
Standards and Technology (NIST) of the United States released guidelines to improve the pro-
tection as well as the detection and subsequent recovery of platform firmware from malicious
attacks [29].

To our knowledge, the current published state-of-the-art in industry does not go beyond man-
ually coded point solutions and no attempts at auto-generating firmware, let alone formal veri-
fication, have been made. Indeed, until a few years ago, BMC firmware was proprietary and not
publicly available at all [14].

Recent projects such as OpenBMC and u-bmc [42] have disclosed some implementations to the
public, with the aim of providing more transparency and in the hopes of collectively finding and
fixing bugs and vulnerabilities [15].

OpenBMC was the first major attempt at open-source BMC software, developed by Facebook
engineers [13]. It has since become a Linux Foundation Project with founding members Microsoft,
Intel, IBM, Google and Facebook, and is now part of the IBM OpenPower stack [30].

While openness helps with transparency and development, it does not eliminate vulnerabilities,
and there have been significant critical flaws discovered in recent years [8–10]. Some of these vul-
nerabilities are related to OpenBMC itself, which is implemented by a large collection of Python
and shell scripts running over the Linux D-Bus communications framework. While these underly-
ing technologies are not insecure per se, the system as constructed does not provide high assurance
of correctness or security.
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Other recent vulnerabilities are related to weaknesses in the (mostly proprietary) Intelligent
Platform Management Interface (IPMI) systems that BMCs rely on. uBMC attempts to address
the inherent weaknesses of IPMI by replacing the weak security of IPMI with Google’s gRPC
[42]. The development of open standards for both BMC hardware and software indicates the
need among system designers to coalesce around a secure, open, and well-understood system for
platform management.

While fixing security vulnerabilities in BMC distributions is important, it does not help ensure
the firmware’s correct functionality Narayanan et al. propose a verified minimal OS RedLeaf that
is “aimed at the needs of a diverse family of firmware subsystems” [26].

In this article, we argue that such a verified software foundation like RedLeaf or seL4 [21] is
necessary but not sufficient. To have confidence in the correctness of BMC software, we need a
framework for reasoning in software about the behavior of the power network and its regulators.

3 EXPERIENCE

Our interest in this challenge is more than purely academic. Our work (and awareness of the prob-
lem) is motivated by our concrete experience building Enzian, a heterogeneous 2-socket server
system designed for systems software research [2, 40]. Enzian is an eATX-format 22-layer board
which has a per-socket thermal design power (TDP) of more than 100W, and a total system TDP of
around 600W. The power tree consists of 25 discrete voltage regulators and more than 30 separate
power rails with complex sequencing requirements. This complexity is increased by the hetero-
geneity of the system’s main components leading to very different power sequencing constraints:
One socket is populated with a 48-core Marvell Cavium ThunderX-1 server System-on-chip (SoC)
the other with a Xilinx Ultrascale+ XCVU9P FPGA, each with 4 channels of DRAM.

Designing and building a system as large as Enzian has exposed us to a number of problems
not apparent in the existing public literature concerning smaller, simpler systems, including the
importance and difficulty of correct power sequencing in a modern computer.

Much early ad-hoc work led us to appreciate the importance of separating concerns: dividing
the task of correct sequence generation from both the specification of platform parameters, and the
labor-intensive task of faithfully modeling regulator behavior, including quirks.

Even though we (like most other groups who face this problem) are only working on a single
design, both the design and our understanding of it have evolved over time. This persuaded us that
a more generalizable approach was, indeed, worth the extra effort for us.

Platform parameters consist of minimum and maximum voltages on nets, power topology infor-
mation, and the like. Some of these parameters we could control, but others were liable to change
at short notice. For example, in our case an error in board layout led to some regulators being re-
placed with a different model partway between early prototypes and final hardware, requiring an
updated power tree. Also, as we evaluated the prototypes, and the tightness of regulation (e.g. I ·R
losses) and transient behavior of the power nets, we gradually tightened (or occasionally loosened)
the upper and lower voltage and current limits for specific nets relative to the datasheet values,
again requiring updated parameters.

Between our first design and working hardware, the power sequences needed to be redesigned
and/or adapted repeatedly, and doing this manually required a lot of time spent tediously changing
one voltage after another and examining the resulting current levels in the system.

The modeling of regulators, particularly those for the critical processor core voltage supplies
(our main chips draw more than 100 Amps at less than 1 Volt), was a very time-consuming process.

Device quirks and minor areas of non-compliance with the standard for Power Management
Bus [38] (PMBus), the protocol stack used by the BMC to communicate with the regulators, can
have dramatic consequences: In one case, due to an interaction between the CPU core regulator’s
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Fig. 2. Detail view of power tree (highlighted in blue in Figure 1) that illustrates sequencing requirements

and high currents: IC1 (FPGA), IC2 (MAX15301) that supplies UTIL_3V3, IC3 (MAX20751) which supplies

VCCINT_FPGA, IC4 (MAX15301) that supplies VCCO_FPGA, and the 12V_CPU1_PSUP rail. The regulators are

controlled by enable signals: IC2 is enabled by EN_UTIL_3V3, IC3 is enabled by EN_VCCINT_FPGA, and IC4 is

enabled by EN_VCCO_FPGA.

PMBus interface and its more fine-grained proprietary control registers, it would default to an
output of 1.2 V on enable, well outside the maximum rating of the CPU, even though it was
notionally programmed to 0.9 V.

The result was a nail-biting moment when we realized that a component costing more than a
thousand dollars was dissipating 100W more than its rated power. The solution here was to repro-
gram the output voltage after the regulator’s logic supply was enabled, but before its output was
enabled. This is now incorporated as a sequencing requirement in this device’s model, guarantee-
ing that future generated sequences automatically incorporate this hard-won knowledge, which
would not be explicit in a hard-coded power-up sequence.

The large investment we had to make in faithfully modeling the behavior of these components is
preserved, and applied automatically to any updated sequence for this board, or indeed wherever
the same components are used in future designs.

Enzian is designed with redundant configuration mechanisms: While the current firmware se-
quences its power tree in software over PMBus, the hardware itself also supports a traditional
‘hardwired’ power sequence where the enable input of a regulator is driven (via a complex pro-
grammable logic device (CPLD)) by some logical combination of control signals and the ‘power-
good’ signals of other regulators.

However, whether the sequence is programmed in software, or wired-in directly, exactly the
same problems exist, namely: what should the sequence be, and how do we know that it is safe?

4 MODEL

In this section we develop our model of a power tree, with reference to the full power tree of
Enzian in Figure 1. Figure 2 shows a representative section of this full tree, and will serve as our
running example. We consider the power tree as a directed graph, with two types of nodes: com-
ponents (IC1-4) and nets (12V_CPU1_PSUP, UTIL_3V3, VCCINT_FPGA, VCCO_FPGA, EN_UTIL_3V3,
EN_VCCINT_FPGA, EN_VCCO_FPGA). A directed edge exists from a net to the input of either a regu-
lator or load component (e.g. CPU). Likewise, an edge exists from a regulator output to the net it
supplies. Each net may only be driven by a single output.

While there are a huge variety of regulators, load devices and system designs, the basic electrical
laws, together with practical considerations, mean that at the level of detail we need all regulators
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Fig. 3. IC output voltage range as a function of inputs, for LVCMOS18 IO.

and devices are essentially equivalent: Regulators convert a small number of input voltages (power
and logic) into a small number of outputs, and with only limited exceptions (e.g. USB OTG charg-
ing), power only ever flows from source to sink. Devices (e.g. CPUs) accept some range of voltages,
and require some ordering between the rails.

Except for systems with rechargable batteries, which are beyond the scope of the current work,
the power rails thus always form a directed acyclic graph. In all systems of which we are aware,
regulators can be characterized by a range of permissible input and output voltages and currents,
and load devices by their allowed supply voltages and a partial order between them that power-
up must respect. This model is applicable to a large range of systems, from embedded devices
with only a handful of regulators, up to the large server-class system on which we evaluate our
approach in Section 6.

The state of a net is its current nominal voltage (the model only considers its DC value and
ignores I ·R drops). The state of a regulator is the combined state of its inputs, both physical (supply
voltage, on-chip enable pin) and logical (PMBus-commanded output voltage or enable signal).

The output of a regulator is a function if its inputs. Figure 3 illustrates this for regulator IC4
which supplies net VCCO_FPGA (the I/O pin supplies), whose value depends on the I/O standard
in use, generally either 1.2 V (e.g. for DRAM), 1.8 V or 3.3 V (e.g. for legacy CMOS ICs). Here,
the IO standard is LVCMOS18 which requires an I/O bank voltage between 1.65 V and 1.95 V.
The inputs to this regulator are two-dimensional: supply voltage and enable signal. With enable
deasserted, the regulator outputs 0 V. With enable asserted, it can generate any voltage between
0.5 V and 5.25 V. Thus, its output range (the set of outputs that we can instruct it to generate) is
[0V] ∪ [0.5V, 5.25V]. The valid ranges for the output driving a net and all inputs supplied by the
net are intersected to compute the range of target voltages for that net, in this case [1.65V, 1.95V].
If this regulator were able to supply only up to, say, 1.90 V, the target interval would be reduced
to [1.65V, 1.90V].

From the target range for a net (the static constraint) and the state diagram for a regulator, we
can infer dynamic constraints on its inputs which in turn become the target for regulators higher in
the tree, possibly after intersection with the input requirements of other regulators/loads sharing
the same net. These constraints are then iteratively filtered back toward the root nodes, such that
every net has a target range. In this example, to produce an output in the 1.65 V–1.95 V range, the
supply net for IC4 (12V_CPU1_PSUP) must be between 5.5 V and 14 V, and its enable signal must be
asserted. In this instance the supply net’s requirement is satisfied by the EPS12V power supply’s
guaranteed output range of [11.4V, 12.6V].

Looking again at Figure 2, IC3 introduces a different type of constraint: ordering. This regulator
has two supply inputs: one for the supply net to be regulated down, and the other for its internal
logic. Until its internal logic is powered, it’s impossible to communicate with the regulator, and
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Fig. 4. Illustrative example of a manufacturer-supplied sequencing graph for an IC. The voltage signal rep-

resented by the dotted line must only be ramped up once the other signal has stabilized i.e. t2 > t1.

thus enable its output, even if the main supply is available. In this case, we’ve introduced a recursive
element to sequence construction once this logic supply is produced by another regulator that we
must configure. This case is easily handled by the model: this regulator’s equivalent of Figure 3 has
an additional axis, corresponding to its logic supply. This in turn generates a dynamic constraint
on the logic regulator (IC2) output, forcing us to enable it before attempting to enable IC3.

The final constraint imposed by the model is an ordering between the voltage rails for a given
IC. While the supply nets for IC3 may be safely enabled in any order, this is not true for the
CPU and the FPGA. As already mentioned, incorrect power sequencing can lead to latch-up and
instantaneous destruction for ICs whose normal power consumption is in the hundreds of amps:
The core regulators will happily supply 200 A into a short circuit.

The sequencing requirements for an IC are generally supplied by the manufacturer, either as a
recommended/mandated power sequence or in a diagram such as Figure 4.

To model this we associate each state change of a net with an initiate event (e.g. enable signal
asserted) which triggers the state change and a complete event (e.g. N consecutive voltage measure-
ments within range after which the conductor has stabilized in the new state).

For the CPU’s main power supplies, the VCCINT_FPGA initiate event must happen after the
UTIL_3V3 complete event:

T (Initiate(VCCINT_FPGA)) > T (Complete(UTIL_3V3))

Additionally, we have the natural condition that complete events always happen after the initiate
event for the same net:

T (Complete(net)) > T (Initiate(net))

This gives us a partial order on events.
The goal of a power sequence is to place leaf components — those with no outputs e.g. the CPU

— in a specified power state. We term these leaf components consumers. To generate a valid power
sequence we must:

(1) Find a platform state that satisfies all consumer constraints and all other input constraints
(static and dynamic).

(2) Find an order of actions that transitions the platform into that state while observing the
partial ordering of all relevant events.

5 ALGORITHMS

As discussed in Section 4 there are two correctness criteria for a power-up sequence that we tackle
separately. First, we compute a valid platform state by casting the problem as a constraint satisfac-
tion problem (CSP) and using a constraint solver. After that, we use the partial order on the events
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to derive a sequence that transitions the platform from its current state to the new state. If no such
sequence exists, we compute a new solution for the platform state and try again.

5.1 Computing the Platform State

Given a set of consumer constraints that describe the desired power states of the consumers (CPU
and FPGA in the case of Enzian), we first need to compute a platform state that satisfies these
constraints. This means we need to propagate these constraints back through the tree and for
each output, select a state that satisfies the static and dynamic input constraints for the attached
net.

A CSP is defined by a set of variables, a set of domains that define what values each variable can
take, and a set of constraints that define relations between subsets of variables that any assignment
for the variables must satisfy. We cast the problem of computing a valid platform state as a CSP as
follows: The set of variables consists of a variable wi , 1 ≤ i ≤ (number of nets) for each net in the
platform, that represents the state of the output connected to that net. The variables can take on
integer values that represent the voltage of the output in millivolts (mV) or 0 and 1 in the case of
logical signals. The set of constraints is composed of static constraints, dynamic constraints, and
consumer constraints.

The static constraints ensure that all the maximum ratings for the connected inputs are observed,
i.e., for each net we have a constraint

number of inputs∧

j=1

low(Mj ) ≤ wi ≤ high(Mj )

For each input j connected to net i this ensures that the net’s state is within the range of the
input’s maximum rating, i.e. at least its minimum rating low(Mj ) and at most its maximum rating
high(Mj ).

The dynamic constraints connect the components’ outputs to their inputs: they ensure that for
each output that gets configured into a specific state the inputs of the same component have the
appropriate values. In the example in Figure 3 showing the possible states for IC2, this means the
output can fall into one of four regions. Each one of these regions then in turn imposes dynamic
constraints on the inputs if the output value falls within the region. In general for each component
we add constraints of the following form:

∨

Pi ∈state regions

low(Pi ) ≤ wi ≤ high(Pi ) ∧ DPi

Each element in the disjunction represents the situation wherein the output connected to net wi

is in a particular state region Pi , i.e. between low(Pi ) and high(Pi ). The term DPi
in each element

represents the region-specific dynamic constraints on the inputs: they impose the requirements of
the state region on the component’s inputs and propagate them back up the tree. Each DPi

is of
the following form:

number of inputs∧

j=1

low(Ij )Pi
≤ w j ≤ high(Ij )Pi

Every element of the conjunction takes care of propagating the dynamic requirements to one of
the inputs Ij by ensuring that it will be configured inside its required bounds for state region Pi ,
i.e. between low(Ij )Pi

and high(Ij )Pi
.
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Fig. 5. Finding a path through the state table.

Finally, we add the consumer constraints which for each consumer constrain the values of the
nets that they are connected to according to their desired power state:

number of inputs∧

j=1

low(Ij ) ≤ w j ≤ high(Ij )

Now that we have encoded the problem of finding a platform state that conforms with the con-
sumer constraints for a specific power state into a CSP, we can use standard CSP solving techniques
to obtain a state for every output. We now compute a set of actions that ensure every output is
configured into this state and all sequencing requirements are observed.

5.2 Computing the Sequence

We have seen in Section 4 why it is important for a sequence that transitions the platform from
a current state into a new state to observe the sequencing requirements. We have also seen that
every change of output state is associated with an initiate and a complete event and that there
is a partial ordering between those events. Every initiate event then translates to an action that
triggers a state change and every complete event to a check that a state change has successfully
completed, e.g. reading a voltage sensor. By topologically sorting the events we obtain a sequence
that transitions the platform from the current state into the new state, observes the partial or-
der between the events and therefore also conforms with the sequencing requirements of the
platform.

5.3 Full Power-up Sequence

Given a power state for each consumer in the platform and corresponding consumer constraints
we can now compute a platform state that satisfies these constraints. Given two of these states
we can also compute a correct sequence that transitions the platform from one to the other. The
primary chips on Enzian transition through multiple intermediate power states between being off
and fully operational or vice versa. This is illustrated in Figure 5.

The columns are the CPU’s power states and the rows are the FPGA’s. Each tile of the grid then
represents a potential platform state which satisfies the consumer constraints for the correspond-
ing power state of both CPU and FPGA. The upper left corner is the state when both chips are off
and in the lower right one both chips are fully operational. We can compute such a platform state
using the approach in Section 5.1.

To transition the platform from powered off to fully operational now means finding a path
through the grid. In each step we have the choice of only advancing in one of the sockets’ power
state sequence or both at once. In the grid this corresponds to going right or down vs. diagonally
right and down. Some combinations of consumer constraints might be mutually exclusive, i.e. there
is no platform state that can satisfy both consumer constraints at once. These combinations are
illustrated with a dark-colored square in the figure. This means we can also get stuck and need to
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backtrack to the last tile in the grid where we still had a choice and try a different path. Such a
situation is illustrated in the figure towards the lower left with the cross-hatched tiles. If we end
up with no choices left, it means that the state transition is infeasible. This can either be sign of a
badly designed platform or a bug in the model.

Once we have found a path from the origin state to the desired state, in our example from “off”
in the upper left to “fully operational” in the lower right, we can compute the partial sequences
that transition the platform between tiles using the approach in Section 5.2.

We obtain the full sequence by concatenating all the partial sequences from the individual steps.

6 EVALUATION

We begin our evaluation by showing that using our model and a conventional constraint-
satisfaction algorithm, we can indeed generate a working power sequence which successfully con-
figures the voltage regulators of Enzian (Section 6.1). We then show that this is not only possible,
but that the event sequence can be derived efficiently from the model with reasonable computa-
tional effort (Section 6.3 and Section 6.2). Finally, we provide a user-experience report about the
efforts needed in using our tool to support a new hardware platform topology (Section 6.4) and
adapting it to a new power management interface provided by the BMC (Section 6.5).

We built an implementation prototype in Python which is capable of deriving correct power
sequences for Enzian. The tool converts the event graph produced by the constraint solver operat-
ing from the platform description into a sequence of power management API invocations on the
BMC. We execute all performance experiments on a desktop machine with an Intel Core i7-6700K
CPU @ 4 GHz and 32 GB DDR4 RAM. We then run the generated Python program on Enzian’s
real BMC to configure the power sequence and bring up the processors of the board.

6.1 Generating Working Power Sequences

In this qualitative evaluation we demonstrate that our tool is able to generate a working power
sequence capable of bringing up the Enzian platform.

We model the power tree of Enzian using the above-described semantics and use the tool to
generate a power sequence. We then ensure that the platform is turned off, i.e. all voltage rails
are off except for the stand-by power. Next, we execute the generated Python program containing
the command sequence to power up Enzian. This transitions the platform from the off-state to the
on-state where both sockets are fully powered on and operational. We then verify that the voltages
are correctly set according to the specification.

First, we analyze the generated power sequence and the resulting Python program. The initial
lines of the power sequence can be seen in Listing 1. Overall, the generated sequence consists of 28
discrete steps. These are implemented as several calls to the power management API that executes
initiate and wait-for-completion events. This results in a Python program with a total of 74 lines for
Enzian. The majority of these lines (61 in total) are directly executing power sequencing actions on
the voltage regulators. The remaining 13 lines are initializing the power management framework
of the BMC and creating required software objects.

When executing the generated Python program, we observe that the power rails of Enzian are
configured correctly and the CPU and FPGA are brought into an operational state.

Comparing the generated power sequence to the manually derived one we observe three key
differences:

Ordering The order of the executed steps differs between the manually written program and
the generated one. This difference is due to the partial ordering of the sequence steps. Conse-
quently, there are multiple correct sequences to bring up a platform. Our tool is even capable
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init_device('isl6334d_ddr_v ')

init_device('pac_cpu ')

init_device('pac_fpga ')

gpio.set_value('C_RESET_N ', False)

gpio.set_value('C_PLL_DCOK ', False)

gpio.set_value('B_PSUP_ON ', True)

wait_for_voltage ('3v3_psup ', v_min =3.135 , v_max =3.465 ,

device='pac_cpu ', monitor='VMON3_ATT ')

wait_for_voltage ('12 v_cpu0_psup ', v_min =4.702 ,

v_max =5.197 , device='pac_cpu ', monitor='VMON1_ATT ')

wait_for_voltage ('12 v_cpu1_psup ', v_min =4.702 ,

v_max =5.197 , device='pac_fpga ', monitor='VMON1_ATT ')

wait_for_voltage ('5v_psup ', v_min =4.750 , v_max =5.250 ,

device='pac_fpga ', monitor='VMON2_ATT ')

wait_for_voltage ('5v_psup ', v_min =4.750 , v_max =5.250 ,

device='pac_cpu ', monitor='VMON2_ATT ')

init_device('clk_main ')

init_device('clk_cpu ')

init_device('ir3581 ')

init_device('ir3581_loop_vdd_core ')

init_device('ir3581_loop_0v9_vdd_oct ')

power.device_write('ir3581_loop_vdd_core ',

'VOUT_COMMAND ' ,0.96)

# more lines follow ...

Listing 1. First lines of the generated power sequence.

of generating multiple correct sequences by selecting a slightly different path through the
power states resulting in a different power sequence. However, the end state is always the
same and thus for the purpose of this work all sequences are equivalent.

Checks The manual sequence always inserts checks to verify that the complete events actually
have happened before proceeding to the next step. The generated sequence will do multiple
steps in parallel if the sequencing requirements allow it and only then insert checks to verify
the steps have completed.

Default States The manual sequence explicitly sets the voltage for every regulator. The gener-
ated sequence omits this if our tool could infer from the model that the regulator was already
configured correctly at that stage in the sequence.

Based on the results obtained in this evaluation we can conclude that the tool is indeed capable
of generating a working power sequence that correctly powers up Enzian.

6.2 Efficient State Generation

We now quantitatively evaluate the state generation process and show that computing a platform
state satisfying a set of consumer demands is efficient and feasible within acceptable time limits.

We populate our model with the power tree description of Enzian. We then measure the time it
takes to evaluate the model and to compute the new platform state for the three combinations of
consumer demands listed in Table 1. This evaluates the algorithm of Section 5.1.

For each problem P1 to P3, we measure 500 runs of the experiment. Note that the constraint
solver uses backtracking and thus may explore the search space in a different order each time,
depending on the order in which the constraints are presented. To get a better representation of
the expected runtime we randomize the order of constraints to compensate for better and worse
paths through the search space.

The results are shown in Figure 6. For better visibility of the data, we show two histograms:
one with the regular measurements showing runtime on the x-axis and the number of runs on
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Table 1. An Overview of Problem Instances P1 to P3

Problem CPU power state FPGA power state
P1 Powered on Powered on
P2 Powered on Powered off
P3 Powered off Powered off

the y-axis and one with the outliers above two seconds execution time. For all problems, we ob-
serve that the majority of experimental runs completed in less than 1.0 second with just a few
outliers.

The complexity of the problems decreases from P1 to P3 as fewer components need to be pow-
ered, thus reducing the total number of constraints in the system (P1 has both processors on, while
P3 has both switched off). This is reflected in the results of P1 to P3, where the median execution
time decreases with fewer powered-on components.

As mentioned in the experimental setup we randomize the order in which the constraints are
presented to our solver. The outliers correspond to runs where the solver happened to explore the
search space in a particularly inefficient way, such that it had to backtrack more often. We also see
a larger number of outliers with more components turned on. This is due, in part, to the DRAM
voltages being included in those configurations. While they are showing up as leaves in the
power tree, exploring their state is mostly irrelevant to finding a power sequence for initializing
the board. However, the general algorithm is not aware of this and can spend time exploring the
DRAM voltage regulators resulting in runtime outliers shown in Figure 6. A possible solution
to this would be to add additional constraints to avoid these types of situations, but we did not
explore this option further as the number of outliers is very small.

We have shown that the evaluation of the power state space search algorithm from Section 5.1
is efficient, usually taking less than a second, and thus it is feasible to evaluate during runtime in
response to user demands for re-configuring the power state of the platform.

6.3 Efficient Sequence Generation

We now quantitatively evaluate the time it takes to compute a complete boot sequence or a partial
reconfiguration using the algorithm from Section 5.3. In other words, we show that it is possible
to efficiently compute a sequence from one platform state to another.

We express the states of the main processors as either powered on or off which we call the
initial state of the system. Then we toggle the power state of one or both of the chips to obtain
the target state. Note that the underlying model captures all intermediate power states including
the initial and target states. By enumerating all possibilities we obtain a total of 16 power states,
four of which do not change the power state at all and are not of interest. From the remaining
twelve states, we further eliminate the ones where the FPGA is powered without the CPU being
powered. This was a constraint on Enzian at the time the experiment was performed. This leaves
us with six total combinations of initial and target states shown in Table 2 to evaluate. For each
configuration P1-P6 we measure the time to generate the transition sequence between the two
states. We repeat each measurement three times.

We present the runtime measurements for all six configurations in Table 3. Overall we observe
that in tendency the runtime grows with the number of transitions, and that ON transitions are
more expensive than OFF transitions. Additionally, finding a transition sequence for the FPGA is
more expensive than for the CPU. However, even in the worst case, the execution time is less than
three seconds.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 84. Publication date: September 2021.



84:14 J. Schult et al.

Fig. 6. Histograms of solving times (to find one solution) for the three problems P1, P2, and P3.

The dependence on the number of transitions is intuitive: When only one chip has to be tran-
sitioned, the state table illustrated in Figure 5 collapses to a single dimension and the problem is
reduced to computing intermediate platform states. ON transitions are more expensive than OFF
transitions as the components on Enzian have more ordering constraints when turning on than
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Table 2. Overview of Problem Instances P1 to P6

Problem Consumer Initial state Target state

P1
CPU Powered off Powered on
FPGA Powered off Powered on

P2
CPU Powered off Powered on
FPGA Powered off Powered off

P3
CPU Powered on Powered on
FPGA Powered off Powered on

P4
CPU Powered on Powered off
FPGA Powered off Powered off

P5
CPU Powered on Powered on
FPGA Powered on Powered off

P6
CPU Powered on Powered off
FPGA Powered on Powered off

Table 3. Measurements (Average of Three Runs) Obtained for the

Six Different Combinations of Consumer Transitions Possible

on the Enzian Platform

Problem Measured runtime [s] #Transitions

P1 2.7 2× ON
P2 1.3 1× ON
P3 1.7 1× ON
P4 0.4 1× OFF
P5 1.3 1× OFF
P6 1.5 2× OFF

when turning off, hence it is more likely backtracking is required. Finally, the power sequence for
the FPGA involves more components on the board and finding a correct sequence for it is therefore
harder.

With a measured worst case execution time of three seconds, pre-computing sequences offline
is certainly feasible. Even online calculation at boot would be acceptable compared to other boot
steps such as RAM initialization which can take a couple of minutes to complete.

In this evaluation we have shown that the entire power sequence of a platform can be generated
within a few seconds and thus presents a viable option for both offline and online evaluation.

6.4 Re-Computing Sequences for New Revisions

New board revisions or platforms have different power trees which must be modeled to generate
a power sequence. We now elaborate on our experiences in expressing the Enzian platform using
the modeling language.

There are essentially two steps involved: (1) obtaining the constraints of the different voltage
regulators on the board, and (2) capturing the regulator topology in the power tree. We had to do
both steps for both the manually-derived sequence and the model population.

For populating the model, we can independently focus on specifying power-tree topology and
the voltage-regulator constraints. In contrast, when manually deriving the power sequence we had
to pay attention to timing requirements and other constraints, as well as the power-tree topology.
Adapting an existing platform to a new revision can be done by simply replacing the description
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of a voltage regulator with the new one in isolation without worrying about the effects it has on
the power sequencing commands to bring up the board.

When using our tool we can express each regulator in isolation and form the topology step-by-
step without worrying about timing and voltage constraints. We expect this approach to be less
susceptible to errors than designing the sequence manually.

6.5 Adapting the Tool

In this part of the evaluation we qualitatively evaluate the user experience, specifically the efforts
needed to adapt our tool to the BMC-specific power management interface.

In its initial version, the tool was built against a different firmware image. When upgrading the
firmware, the tool was no longer compatible with the Enzian BMC’s firmware, and thus needed
to be adapted to support this major change in the power management API. We adapted both the
manually derived sequence and our tool to the new interface.

Adapting the sequence manually, required consulting various datasheets to obtain knowledge
about the sequencing requirements of the various components and how they can be expressed
using the API provided by the firmware. The previous sequence did not provide enough informa-
tion to adapt it and required a significant amount of work reading the datasheets and carefully
examining the schematics.

In contrast, we did not have to adapt the model itself for this change in the power management
API because all knowledge about the power tree (with its components and constraints) were al-
ready encoded in the model. This completely avoids consulting the platform datasheets. All that
is left to do is adapting the code generator of the tool to the new API.

Thus, adapting the code generator took roughly a single person-day, while understanding and
adapting the entire power sequence manually to the new API consumed over three person-weeks.
Our experience shows that supporting a new power management interface resulted in significantly
less work than to manually deriving and adapting the bring-up sequences to the new firmware.

7 RELATED WORK

As we remarked in Section 2, there is a dearth of published work on board management software.
Nevertheless, our work is closely related to other, neighboring fields which we discuss here.

The problem of deriving a correct power-up sequence bears some similarity with the problem
of a device driver correctly initializing and controlling the operation of a device. Device drivers
not only contribute a large amount of code to systems software [20], but are also a significant
contributor to bugs and errors [6]. Dingo formalizes driver protocols to make the interaction with
devices unambiguous [32].

Writing device drivers is inherently tied to the operating system architecture, but device driver
synthesis [33, 34, 45] enables the generation of OS-specific device driver code based on a specifica-
tion, and thus automatically generating the right control sequence for the device. Beyond drivers,
there is early work on synthesizing most of the hardware-specific parts of an OS based on specifi-
cations [19]. Our work similarly applies program synthesis techniques to derive power sequences
for the BMC.

Inside the OS (as opposed to BMC firmware), constraint solving has been applied to a variety
of OS techniques both online and offline to select a whole-system configuration which satisfies
current requirements.

For example, the problem of configuring PCI Express devices under a set of root complexes
has been expressed in Prolog and solved using constrained logic programming techniques [35].
Similar methods have been applied to data center network configuration [25] or synthesizing
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cluster management code in distributed systems [37]. Spex [48] goes further by attempting to
infer configuration constraints from the program source code, which is not possible in our case.
Cocoon [31] uses a hierarchical design process to specify the configuration of software defined
networks to obtain a correct-by-construction initialization of the network controller.

Outside the field of OS design, software-based industrial control systems consist of a controller
and a plant forming a closed loop system; software running on the controller must correctly con-
figure the plant. QKS synthesizes correct-by-construction control software from the specification
of a plant model, an implementation specification and the safety and liveness requirements [1, 22].

Closer to our goal of platform power management, for modern servers and phones it is usually
the OS’s responsibility to implement power management policies – deciding which components
to power on or turn off is important to minimize the power requirements. Xu et al. argue for a
centralized power management agent [46, 47] which decides when devices should switch between
the discrete enabled or disabled states based on quality-of-service (QoS) requirements and specifi-
cation of power states. QoS can also be used by agents in embedded systems to automatically find
appropriate dynamic power states [16]. Benini et al. [3] provide a survey of design techniques for
system-level dynamic power management.

In contrast our work is not trying to decide when devices should transition to different power
states but provide help in how these transitions are implemented at a lower level.

We are also not the first ones to apply more formal techniques to power management: Gupta et al.
applied formal methods to dynamic power management with the goal to minimize the overall
power consumption, which as already stated above is policy that could be implemented using our
mechanisms [17]. p-FSMs model system-level power management including control mechanisms
and operating states [36]. Like us, the authors argue that the application of formal methods is
essential to cope with the complexity of system-level power management in order to meet energy,
power, and thermal constraints. They focus on the design of power management systems and
it is not clear whether their model is able to handle individual regulators as is required for our
work. While they model-check their representation of an SoC, they do not demonstrate controlling
physical hardware with their technique.

Other approaches focus on providing an interface between the main OS and the BMC or other
power sequencing functionality. The Advanced Configuration and Power Interface (ACPI) [43]
defines mechanisms to control the power state of the entire system e.g. transitioning to sleep or
waking up. Moreover, the ACPI tables include information about the power states of the mother-
board devices and their connections, including methods to change the power state of the devices.
Like the work mentioned above, ACPI operates at a higher level than our tool: it provides the OS
on the CPU(s) of a platform with information about the power management capabilities of the
platform but does not deal with how those capabilities are implemented.

Similarly, Devicetree [11] provides information about the hardware platform such as device
addresses, amount of memory, processors, and existing power and clock domains to system soft-
ware. The OS uses this information to find the device and its power and clock domains. However,
information about power domains encoded in the devicetree does not include voltage levels or
supported input/output voltages and is thus not suitable for our purpose.

8 CONCLUSION

In this article, we have applied computer science techniques to a somewhat understudied problem
in building and operating a computer: how to turn the machine on in a safe and efficient manner.

While not well-known in the systems community, the power sequencing problem is real and
becoming more significant as systems become increasingly complex, and the consequences of
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getting it wrong become more serious (whether these consequences are security vulnerabilities
or permanent damage to the hardware).

We have shown that generating a correct power-on sequence can be reduced to a constraint
satisfaction problem, and that even a relatively unoptimized solver can compute a solution for
a realistic, complex server in a relatively short amount of time – to the extent that it would be
practical online at boot time.

However, this solution can only be achieved if the problem can be posed to the solver in a
suitable manner. Consequently, we have presented a representation of a machine’s power tree that
captures both the detailed topology of a modern server platform, and the behavior of individual
power regulators and other components at a sufficient level of detail to generate useful results. We
look forward to the release of more well-documented open hardware on which to evaluate our
approach.

Even with a single system design though, our direct experience has been that this effort to create
a more general solution has already paid off. We were prompted to explore it by the effort (and
nerve) required to create a power-on sequence manually and interactively, and by the lack of any
existing automated solutions to this problem, regardless of whether the resulting sequence was to
be executed in software by a BMC or programmed into hardware in a CPLD. Having done the work
to model hardware platforms, we are confident that applying it to another server design would be
both valuable (in time saved) and low-effort.

Generating correct power sequences is only a first step to bringing rigorous engineering disci-
pline to the problem of BMC firmware. We have laid the foundations to use our model for use-cases
like online power and thermal management, which we are exploring in the context of Enzian.

All of our code, including details of the platform used, is available as open source.1
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