
Embracing diversity in the Barrelfish manycore operating system

Adrian Schüpbach, Simon Peter, Andrew Baumann, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zürich

Paul Barham, Tim Harris, Rebecca Isaacs
Microsoft Research, Cambridge

ABSTRACT
We discuss diversity and heterogeneity in manycore computer sys-
tems, and identify three distinct types of diversity, all of which
present challenges to operating system designers and application
writers alike. We observe that most current research work has con-
centrated on a narrow form of one of these (non-uniform memory
access) to the exclusion of the others, and show with measurement
why this makes sense in the short term.

However, we claim that this is not viable in the long term given
current processor and system roadmaps, and present our approach
to dealing with both heterogeneous hardware within a single sys-
tem, and the increasing diversity of complete system configura-
tions: we directly represent detailed system information in an ex-
pressive “system knowledge base” accessible to applications and
OS subsystems alike, and use this to control tasks such as schedul-
ing and resource allocation.

1. INTRODUCTION
This paper argues that diversity of hardware resources will be as
much a problem as raw scalability as increasingly complex many-
core processors become the norm.

In the manycore era, processor performance grows by increas-
ing the number of cores rather than individual clock rates. Con-
sequently, if an application’s performance is to improve over time,
then it must be designed to work over a wide range of degrees of
hardware parallelism. However, while there is a great deal of work
on programming abstractions for expressing parallelism, there is
very little work on the operating systems and services that will be
needed to support them. This is a problem because parallelism on
tomorrow’s manycore systems will look very different from paral-
lelism on today’s shared-memory multiprocessors. There are three
main differences:

First, mass-market deployment means that it will not be practical
to manually tune an application when deploying it on particular
hardware. “Sensible” things must happen by default. Performance
should meet users expectations – hopefully increasing, but certainly
not decreasing, with the addition of resources. We do not want

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMCS’08, June 24, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM ...$5.00.

contention in the memory system to cause a program to slow down
when it is allocated more cores; it is possible to even imagine some
situations where the additional cores should be left idle.

Second, the hardware will be shared between multiple applica-
tions rather than a whole machine or static machine-partition be-
ing dedicated to one. The system will have to manage workloads
with multiple CPU-hungry applications, deciding how to allocate
the different kinds of cores available, and how to adjust applica-
tions’ allocations over time. Often, the number of cores will vastly
dominate the number of applications.

Finally, the range of execution environments that applications,
and more importantly an operating system, have to confront is in-
creasing over time. Writing system software that can adapt to this
heterogeneity has received comparatively little attention in the lit-
erature.

1.1 Types of diversity
Diversity of hardware execution environments has at least 3 dis-
tinct aspects, which for the purposes of this paper we term non-
uniformity, core diversity, and system diversity.

Non-uniformity includes the trend towards non-uniform mem-
ory access architectures for scalable multiprocessing, but we ar-
gue that the concept should be broader. Multiple levels of cache
sharing are now the norm on multicore processors, rather than the
single-level NUMA models embodied in many current OS kernels.
Furthermore, interconnect technologies like HyperTransport and
QuickPath mean that the inside of a general-purpose computer will
increasingly resemble a network, and cost of messaging between
cores may depend significantly on hop length and routing.

Core diversity refers to the expected heterogeneity of cores within
a single system. Most existing NUMA machines still have homoge-
neous cores, but the trend for x86 processors is towards cores spe-
cialised for particular tasks with differing performance and power
tradeoffs, and instruction set extensions [10]. The IBM Cell pro-
cessor has radically heterogeneous cores. The practice of general-
purpose processing using GPUs [20], and the ability to put FPGAs
(many of which have their own ARM cores, for example) into pro-
cessor sockets introduce further diversity in available processing
resources.

In contrast, we use the term system diversity to refer to the fact
that the resources available on completely separate systems are in-
creasingly diverse, to the extent that it is impractical to write code
optimised for any hardware design for any purpose other than be-
spoke scientific applications. At the same time, of course, effi-
ciently using a given hardware design is a software problem. Those
of us outside the scientific computing community, including those
writing and maintaining operating systems, will have to write code
that can run efficiently on a very wide range of hardware.

1.2 Aims
In the Barrelfish project we are tackling the question of how the OS
and language runtime system should be architected for heteroge-
neous manycore systems; how the two should interact and how the
interfaces between them should be expressed. We are doing this in
the context of a new operating system specifically designed for a
diverse and unpredictable range of future heterogeneous manycore
architectures.

Our goals include scalable performance, but we acknowledge
that we are unlikely to match the performance of an operating sys-
tem backed by the resources of Microsoft or the Linux community.
We choose to write an OS from scratch because of the clarity that
comes from considering design issues unburdened with compati-
bility worries and legacy code [29].

However, an equally important goal for us is to reduce the code
complexity involved in dealing with diversity. In particular, mecha-
nism code should be as simple as possible for reasons of reliability
and security. By producing better internal representations of hard-
ware heterogeneity, we hope to reduce the complexity of the code
on which correct and secure system operation depends.

As we discuss Section 2, conventional operating systems present
fixed abstractions and a simplified view of hardware to applications
and, indeed, to higher level parts of the OS. We show in Section 3
why this approach has been sufficient so far, but argue in Section 4
that this it will no longer be tenable in future manycore systems,
and that now is the time to investigate alternatives. We are explor-
ing the idea of exposing rich representations of the hardware in a
manner amenable to automated reason and optimisation by system
services and application libraries.

Storing and querying a representation of a heterogeneous ma-
chine’s hardware and characteristics is in itself a complex task, and
one that we envisage will be provided by a new OS service. Sec-
tion 5 describes the use of the system knowledge base that performs
this task in Barrelfish, and describes how it might be used to direct
OS policy.

Section 6 discusses some of the outstanding challenges to build-
ing such a system, and our initial approaches. We conclude in Sec-
tion 7.

2. BACKGROUND AND RELATED WORK
The trend in PC-class hardware is towards increasing diversity. But,
paradoxically, most (though not all) of the complexity of modern
hardware is ignored by current operating systems like Vista and
Linux.

A modern OS can get away with this because, at the basic level
of functionality, PC hardware itself does a good job of abstracting
hardware differences: if written conservatively, the same piece of
code will correctly execute on pretty much any piece of PC hard-
ware. The exception is very low-level differences such as page-
table formats on new processors, and the presence or absence of
certain architectural features like virtualisation support or SIMD
instructions. While strict correctness is preserved by such hardware
uniformity, optimal performance is not, as we will see in Section 3.

IBM’s Cell processor [11] represents a substantially more het-
erogeneous architecture than the x86-based systems that predomi-
nate today. Projects such as CellVM [19] (a Java Virtual Machine
for Cell) show how difficult it is to transparently support such het-
erogeneous systems.

Most of the existing work to date on dealing with hardware di-
versity in commodity operating systems has been concerned with

performance issues over NUMA architectures. We present a brief
survey here centred on Linux, but similar techniques exist in other
commodity operating systems, including Solaris [26] and Windows
[24].

2.1 NUMA optimisations
The mainline Linux 2.6 kernel supports discontiguous memory and
memory allocation policies [3]. Efficient support for discontiguous
memory is implemented by adding another layer of address space,
called linear physical addresses that are finally mapped to physical
addresses. This way, Linux makes regular page tables appear to
map to contiguous physical memory – a measure to make a hetero-
geneous machine look like an SMP. Processes may then currently
either define a memory allocation policy for their whole virtual ad-
dress space, or different policies for restricted areas of their virtual
address space (currently, no memory mapped files and only specific
cases of memory sharing are supported). The default system-wide
policy is hard-coded into the kernel and tries to allocate memory
that is local to the CPU a process is running on.

At present, common practice is for the OS to abstract away non-
uniformity and application requirements, and subsequently have
the kernel scheduler and memory allocators infer applications’ needs
through limited monitoring [3]. There is, however, a recognition
that more information about the underlying hardware architecture,
and more control over the allocation of resources, should be avail-
able to applications for better scalability. In the light of this, some
information about the particular NUMA configuration present can
be discovered using new kernel APIs under development, e.g. [12].

There is also work on the current Linux scheduler implemen-
tation, increasing awareness of NUMA architectures by allowing
for processes to have affinity with sets of CPUs and their asso-
ciated cache and memory, called scheduling domains [3]. Pro-
cesses are load-balanced on these domains, as well as migrated
between domains according to defined policies in order to abstract
this information away from user-space and higher-level kernel lay-
ers. However, this process does not take instruction set and I/O het-
erogeneity into account and has been identified to perform badly
on single-board heterogeneous architectures like AMD’s Opteron
when scheduling domains contain only a single CPU [3].

With regard to scaling the kernel itself, the Linux kernel doc-
umentation acknowledges that replication of kernel code and data
would help scaling on heterogeneous architectures. This replication
is currently implemented for the boot memory allocator and page
allocation data structures by encapsulating all of their variables into
special replication data structures that export CPU-specific alloca-
tion functions. On homogeneous architectures, there is one stat-
ically allocated version of each of these data structures to make
kernel code uniform. Kernel code replication is currently only sup-
ported through special patches on a limited number of architec-
tures that involve hardware tricks to map a copy of the kernel at its
well-known base address and does not extend to kernel modules,
as Linux expects certain shared data structures at fixed addresses in
virtual memory.

The SGI Altix NUMA research effort identifies contention on
locks and cache-lines as scalability-preventing factors on such het-
erogeneous architectures [4]. They further divide cache-line con-
tention into false cache-line sharing and cache-line ping-ponging.
False sharing occurs when an application’s or the kernel’s data is
not structured with scalability in mind, resulting in at least two oth-
erwise not related variables to end up in the same CPU cache-line.
In this case, when at least one variable is written to, all variables
in the cache-line lose cache locality. Ping-ponging occurs when

different CPUs write to shared variables on the same cache-line,
resulting in frequent change of exclusive ownership of the cache-
line. This occurs frequently with busy multiple-writer locks, as the
lock count is updated by different CPUs. They argue for CPU-local
code and data to improve the situation.

Similarly to Linux scheduling domains, IBM AIX employs re-
source sets [17] to support processor and memory affinity. Re-
source sets utilise processor, memory and multi-chip module topol-
ogy information, supplied directly by the hardware. Applications
can be bound to processors either by the system administrator or
through a system call interface. Once bound to a resource set, a
thread will only be scheduled on the processors within that set and
allocate memory near to these processors.This allocation is static
unless changed manually.

Within Linux, there is also work on memory/cache locality [15],
multi-queue scheduling [8,13], asynchronous I/O and NUMA-aware
locking.

It is clear from the size of this section that much effort has been
directed at optimising operating systems for NUMA, however we
believe that future manycore processors will offer further challenges
in this area, not only because they will include complex NUMA
hardware topologies, but also because they will increasingly be
used in general-purpose desktop and server systems, rather than the
more specialised high-performance environments in which NUMA
systems have traditionally appeared. In general-purpose comput-
ing, we argue that there is a need for more efficient automatic re-
source allocation by system software, and less opportunity for static
optimisation and fine-tuning of a workload to a specific system.

2.2 Scalability in research systems
Intel’s manycore runtime McRT [25] addresses the scalability of
an application runtime, including some notion of inter- and intra-
machine heterogeneity at the application level. McRT illustrates
how important it is to make use of knowledge about the hardware,
and provides a valuable tool for application writers. However, as
an application runtime McRT addresses neither sharing a hetero-
geneous manycore machine between competing applications, nor
dealing with many hardware issues that are not visible outside the
OS kernel.

The Tornado [9] and K42 [1, 14] multiprocessor operating sys-
tems investigated scalability on large parallel NUMA systems with
a clean-slate, to which Linux compatibility was later added. K42’s
NUMA support has been highly influential on our work, as has its
use of online profiling mechanisms [5, 30] to drive OS policy, a
topic we touch on later.

Uhlig [28] has investigated scaling the L4 microkernel by apply-
ing a wide variety of optimisations, some of which include choos-
ing appropriate kernel mechanisms at runtime based on informa-
tion such as application-provided hints. Our approach in Barrelfish
builds on this by generalising the knowledge needed to choose
among these alternatives, and exporting the hardware information
to user-space.

2.3 Core and system diversity
While there has been a plethora of work on scaling on NUMA ar-
chitectures, we have found relatively little work dealing with core–
or system diversity.

Infokernel [2] stresses the importance of providing detailed in-
formation to user space. An Infokernel exports general abstractions
describing internal kernel state to user-space applications to allow
them to build more sophisticated policies on-top of kernel policies

to direct those kernel policies in various ways. In contrast to our
work in Barrelfish, Infokernel uses this technique in the context of
an existing OS design, rather than looking at a new OS built around
the concept.

In the Exokernel [7], all fixed, high-level abstractions are avoided
and all information about the underlying hardware (such as page
numbers, free lists, and cached TLB entries) is exposed directly to
user-space. An Exokernel thus sacrifices the portability of appli-
cations in favour of more information and therefore more room for
policy specialisation. The complexity this might imply is managed
using standard interfaces supplied with library operating systems.
As we will discuss further in Section 4, we are using similar princi-
ples in Barrelfish to provide more information to applications about
the underlying architecture, albeit with the different goal of manag-
ing manycore heterogeneity. However, we are also exploring how
to utilise hardware information, resource discovery and online mea-
surement in such a system.

The Resource Kernel [21] is a loadable kernel module which in-
teracts with the host kernel and allows the applications to reserve
system resources which are then guaranteed. The module runs
completely in kernel mode and is designed to run together with the
host kernel. The main goal of this work is to satisfy the reservations
made by applications on system resources. Neither user nor kernel
space has a global view of the system’s structure or resources, and
thus they cannot apply global optimisations for resource allocation.

The Q-RAM [22] project is designed to satisfy minimum re-
source constraints and furthermore to optimise a utility function
to allocate more resources to applications than minimally required,
if available. If an application gets more resources than the mini-
mum specified, it adapts itself to provide better QoS. Searching for
optimal solutions is a hard problem [23] in practice, and quickly be-
comes infeasible with many applications. Furthermore, the utility
function must be statically specified by the programmer, something
we would prefer not to require for all Barrelfish applications.

Finally, there are a few examples in commodity operating sys-
tems of rich, high-level descriptions of heterogeneous hardware
resources. In particular, the ACPI and EFI standards have an ex-
plicit representation of many board-level resources, and the CIM
standard [6] defines a schema for a description of higher-level re-
sources. It is easy and convenient for us to inject such represen-
tations into our own, but our intention is to build a system-wide
knowledge base that is broader in scope.

3. HARDWARE DIVERSITY
As we have seen, commodity operating systems so far focused on
multicore support efforts solely on NUMA abstractions. To date,
and in the short term, there are good reasons for this, as we demon-
strate in this section. As an early stage of our design for Barrelfish,
we benchmarked the latency of various low-level operations on two
different recent machines of the x86-64 architecture.

The first (see Figure 1) consists of an Intel s5000XVN worksta-
tion board with two Intel Xeon X5355 quad-core processors run-
ning at 2660MHz. They are connected to a single memory con-
troller by the system’s front-side bus. The memory and single PCI
Express bus are accessed through the memory hub controller. This
is a traditional non-NUMA system.

The second system is quite different (see Figure 2), consisting of
a Tyan Thunder n6650W board with two dual-core AMD Opteron
2220 processors running at 2800MHz. They are connected by Hy-
perTransport point-to-point links, and each processor socket has
two directly-connected memory banks plus its own PCI Express
root complex. This is a NUMA system.

M
em

o
ry

M
em

o
ry

L
2

 C
ac

h
e

L
2

 C
ac

h
e

L
2

 C
ac

h
e

L
2

 C
ac

h
e

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

Controller
Memory

Hub

Hub

I/O

ControllerG
b

e PCIe

Die Die Die Die

CPU CPU

Figure 1. Structure of the Intel system
G

b
e

C
o

re
 3

C
o

re
 2

Die Die

CPU

C
o

re
 0

C
o

re
 1

Die Die

CPU

M
em

o
ry

M
em

o
ry

PCI/Host

Bridge

PCI/Host

Bridge

PCIe

Figure 2. Structure of the AMD system

To run our benchmarks, we booted the hardware using our bare
Barrelfish kernel. No interrupts, other than the interprocessor in-
terrupt when required, were enabled and no tasks other than the
benchmark were running. Every benchmark was repeated 1,000,000
times, the aggregate measured by the processor’s cycle counter, and
the average taken.

3.1 IPI latency
To learn more about the communication latencies within a modern
PC, we measured the interprocessor interrupt (IPI) latency between
cores in our test systems. IPI is one example of direct communi-
cation between cores, and can be important for OS messaging and
synchronisation operations.

IPI roundtrip latency was measured using IPI ping-pong. In-
cluded in the total number of ticks is the code overhead needed to
send the IPI and to acknowledge the last interrupt in the APIC. For
our measurements, this overhead is not relevant, because we are
interested in the differences rather than absolute latencies.

We measured the various IPI latencies on our two systems; the
results are shown in Tables 1 and 2. As expected, sending an IPI
between two cores on the same socket is faster than sending to a
different socket, and sending an IPI to a core on the same die (in
the Intel case) is the fastest operation. The differences are of the

Roundtrip Latency
Ticks µ sec

Same Die 1096 0.41
Same Socket 1160 0.43
Different Socket 1265 0.47

Table 1. IPI latencies on the Intel system

Roundtrip Latency
Ticks µ sec

Same Socket 794 0.28
Different Socket 879 0.31

Table 2. IPI latencies on the AMD system

order of 10–15%. These may be significant, but it seems plausible
that a simple OS abstraction on this hardware that treats all cores
the same will not suffer severe performance loss over one that is
aware of the interconnect topology.

3.2 Memory hierarchy
Modern multicore systems often have CPU-local memory, to re-
duce memory contention and shared bus load. In such NUMA sys-
tems, it is possible to access non-local memory, and these accesses
are cache-coherent, but they require significantly more time than
accesses to local memory.

We measured the differences in memory access time from the
four cores on our AMD-based system. Each socket in this system
is connected to two banks of local memory while the other two
banks are accessed over the HyperTransport bus between the two
sockets. Our system has 8 gigabytes of memory installed evenly
across the four available memory banks. The benchmark accesses
memory within two gigabyte regions to measure its the latency. The
memory regions were accessed through uncached mappings, and
were touched before starting to prime the TLB. This benchmark
was executed on all four cores.

Table 3 shows the results as average latencies per core and mem-
ory region. As can be seen, the differences are significant. We
also ran the same benchmark on the Intel-based SMP system. As
expected, the latencies were the same (299 cycles) for every core.

Memory access is one case where current hardware shows sub-
stantial diversity, and not surprisingly is therefore where most of
the current scalability work on commodity operating systems has
focused.

3.3 Device access
In systems (such as our AMD machine) with more of a network-
like interconnect, the time to access devices depending on core.
Modern systems, such as our AMD machine, have more than one
PCI root complex; cores near the root complex have faster access to

Memory region Core 0 Core 1 Core 2 Core 3
0–2GB 192 192 319 323
2–4GB 192 192 319 323
4–6GB 323 323 191 192
6–8GB 323 323 191 192

Table 3. Memory access latencies (in cycles) on the AMD system

Core Ticks µ sec
0 567 0.20
1 567 0.20
2 544 0.19
3 544 0.19

Table 4. Device access latencies on the AMD system

the devices on that PCI bus than to devices on remote buses. Device
access within the same system is therefore heterogeneous.

We measured this behaviour on our AMD-based system. To
measure the access latency to a device we measured the cycles
needed to read a PCI device’s memory-mapped register. The de-
vice used was an Intel e1000 Gigabit Ethernet card connected to
the root complex at the second socket (refer to Figure 2).

Table 4 shows that cores 0 and 1 need slightly longer to access
the device register than cores 2 and 3. However, the difference is
less than 5%.

3.4 Discussion
We have shown that heterogeneity present in current multicore sys-
tems is fairly limited; beyond the differences in memory access
latency, which modern “NUMA-aware” operating systems such as
Linux already abstract and handle, other non-uniformity is limited
to minor differences in IPI latencies and device access times.

However, because there is already substantial work on NUMA
systems, and because we believe that future manycore systems will
feature more diversity in hardware diversity than NUMA memory,
to the extent even of diversity between features available on differ-
ent cores, we are focusing on a much broader problem in Barrelfish:
exploiting the heterogeneity present in all aspects of a manycore
system. The following section describes our approach in more de-
tail.

4. HETEROGENEITY IN BARRELFISH
As we have seen, today’s systems hide heterogeneity by abstracting
the underlying hardware. System components and applications for
the most part see a homogeneous SMP system where every core ap-
pears the same. By hiding the hardware heterogeneity, the system
has no chance to optimise execution on the appropriate hardware
components.

Stepping back somewhat, we observe that the same kernel data
structures are typically used for two purposes:

1. Policy. These data structures represent the hardware’s com-
plexity to the operating system, and from them the OS de-
rives policies and tradeoffs to guide its future execution. The
requirements for this usage are ease of extensibility (in an-
ticipation of future hardware developments), expressibility
(to capture the richness and diversity of the underlying hard-
ware), and flexibility (by covering a wide range of machine
properties, an OS may optimise globally over a number of
different tradeoffs).

2. Mechanism. The same kernel data structures are traversed
at runtime to perform IPC, service page faults, send network
packets, etc. The principal requirement for this second us-
age is performance. Under this requirement, these structures
should be specialised for scalability, low latency of traversal,
and high throughput.

These two sets of requirements are, of course, contradictory.
Where high performance is the absolute priority (exemplified by
the early design principles of L4 [16]), the kernel’s representation
of its hardware environment is highly specialised to the particular
configuration the kernel has been ported to, and incapable of per-
forming on another configuration without considerable code modi-
fication. Where functionality on diverse hardware is a requirement
(as in most mainstream operating systems), the emphasis is more
on flexibility.

In this paper we argue for an alternative approach. First, we are
employing two different representations of the hardware in Bar-
relfish, one to drive policy and the other for efficient implementa-
tion of mechanism. Second, we want to expose as much informa-
tion as possible to the OS components using these datastructures,
and ultimately, runtime systems and applications. This enables the
system and also the applications to make better use of the hardware
capabilities and to deal with heterogeneity as best as possible.

4.1 The system knowledge base
In Barrelfish we envisage an operating system service, termed the
system knowledge base (SKB), that contains a representation of the
machine’s hardware and current state. The SKB is populated with a
mix of statically and dynamically determined data about the system
as a whole, such as individual devices and the machine’s intercon-
nect topology. The information in the SKB can be derived in three
ways:

1. It can result from resource discovery, such as PCIe bus enu-
meration. We expect such resource discovery and monitor-
ing to be an ongoing process, as hotplugging of components
(including processors and memory) becomes more common-
place.

2. It can be derived from online measurement and profiling,
whether of devices, architectural facilities, interconnect links,
or application performance and behaviour.

3. It can be asserted in the form of a priori knowledge about
particular pieces of hardware, derived from data sheets, for
example.

The SKB represents this knowledge in a form that is flexible,
expressive, and easy to use in a sophisticated way by clients (both
applications and other parts of the operating system). One possible
approach (which we are currently developing) is to use constraint
logic programming techniques – such an approach is more limited
in expressive power than the description logics favoured by the se-
mantic web community, but has the advantages of much lower eval-
uation complexity, and the ease of posing constrained optimisation
queries. We anticipate the latter being useful in deriving OS poli-
cies.

Note that, as we discussed in the previous section, the SKB is
used to drive system resource policy, but is not directly involved
in the underlying mechanisms provided by the system. This means
that access to the SKB is never on the system’s critical fast path, and
that therefore the performance of SKB access is not critical for the
overall system performance, enabling the use of techniques such as
constraint programming for queries, which run as background ac-
tivity. Furthermore, we intend to build Barrelfish in such a way that
even when the SKB is temporarily unavailable, the system contin-
ues to operate, albeit with a perhaps non-optimal resource alloca-
tion.

Clearly in the case of online measurement, there is a trade-off
between the frequency at which this information is updated, the
timescale over which it applies, and the potential performance im-
provements that can be gained. We are exploring this trade-off
within Barrelfish, where a prime client of the SKB service is ex-
pected to be the task scheduler.

4.2 The role of the application
Information about system state should go through to the appli-
cation; furthermore, the application, being a part of the system,
should be involved in giving more information about its state and
demands to the operating system.

Here is where the interface between the operating system and the
application plays an important role. Two approaches are feasible:

1. The OS interface provides primitives to the application, so
the application can direct the operating system on what de-
vices to run which parts of its code.

2. The application is able to specify demands in terms of band-
width and latency, as well as other factors, to the operating
system, while also being able to convey information, includ-
ing for example scalability figures of its run-time on different
combinations of hardware.

The first approach is sub-optimal when dealing with a mix of
applications. Local decisions on what to run where are made by
applications that the scheduler tries to fulfil by best effort. The
second approach conveys more information on the goals of an ap-
plication to the scheduler, enabling it to find a better compromise.
Again, in the second case, whenever there is not enough informa-
tion conveyed by the application, the scheduler can infer some of it
by trying solutions and determine their effectiveness by monitoring
the system. This would not be possible within the first approach
without violating the demands of the application.

Within both cases it is at least beneficial for an application to be
able to explore the topology of the hardware on which it is running.
While being absolutely necessary for the first approach, the appli-
cation would be able to better balance its demands for the second.
For example, if it knew that there was only a limited amount of
bandwidth available between CPUs but ample amounts of process-
ing power, it could choose an algorithm that favours local process-
ing over communication.

There are two classes of application that we consider in Bar-
relfish:

1. applications that know their resource demands exactly and
specify them to the system,

2. applications that don’t know exactly what they require and
can benefit from automatic profiling.

The first class of application is able to specify its resource de-
mands in terms of CPU cycles, memory consumption, bandwith
and other factors, and thus can directly interact with the SKB. A
classic example of this class of application may include a database
system, which performs its own optimisation and would prefer that
the operating system give it certain available resources for it to
manage.

Other applications (or their programmers) may not know or care
about optimal resource requirements. Such applications can still
benefit from the SKB, due to the system’s use of online profiling

and self-monitoring. Through this permanent background monitor-
ing, the scheduler is able to adapt to the situation as new applica-
tions are started by the user or already running applications change
their demands. The balance between what has to be decided imme-
diately, possibly based on incomplete information, and what can be
determined over longer periods of time by the operating system is
an important area for further research. However, we note that pre-
vious work has shown that predictive resource management based
on prior behaviour is sufficient to model demand for many applica-
tions [18].

5. USING SYSTEM KNOWLEDGE
In Section 4 we introduced the system knowledge base and ex-
plained what information can be gathered and added to the knowl-
edge base using device classes containing properties of the devices.
We also pointed out that the scheduler is one of the main clients of
the knowledge base. In this section we show how the knowledge
base can be used to make decisions, giving more concrete exam-
ples.

5.1 Managing core diversity
Dealing with diversity between cores will be a challenge for future
operating systems; for example, some cores may not include SIMD
or floating point instructions. The classic approach to managing
this diversity would be to extend the CPU abstraction with a set
of the features supported by each core, and use this information
to schedule applications only on cores that contain the appropriate
features.

However, in Barrelfish we export such information to the sys-
tem knowledge base, which in addition to the simple strategy de-
scribed above, allows applications to adapt to the available hard-
ware features. For example, an application may query the SKB
to find out what features are available; if all the cores with SIMD
extensions are in use, and a (slower) non-SIMD version of an al-
gorithm is available, it may be more efficient to use the non-SIMD
variant on one of the free cores rather than forcing the applica-
tions to share the already-loaded cores, and also incurring addi-
tional context-switching overheads.

Even on current hardware with homogeneous cores, in some cir-
cumstances we may benefit by scheduling applications that use spe-
cific features (such as SIMD or FPU) on different cores, thereby
avoiding extra context-switching overheads for saving and restor-
ing the associated register state.

5.2 Interconnect-aware device access
As a concrete example of using the SKB to optimise runtime be-
haviour, consider the hardware configuration shown in Figure 3
which is typical of a contemporary multicore machine such as the
AMD system described in Section 3. In this example, three appli-
cations are processing high-bandwidth incoming TCP streams. The
NIC is a PCI bus-master device which accesses main memory via a
bridge attached Node1. The NIC’s device driver must enqueue re-
ceive buffer descriptors telling it where to DMA incoming packets,
and these buffers may reside in either Memory1 or Memory2.

Some newer NICs provide hardware support for TCP offload and
“zero-copy receive” and such NICs can potentially choose a DMA
buffer which resides on the local-node of the destination process.
Without TCP offload all three data streams will be written by DMA
to the same buffer. With the applications App-A running on Node1,
and App-B and App-C on Node2, information in the knowledge

Node1 Node2

Core1 Core2NIC

Memory1 Memory2

interconnect

TCPA

TCPB

TCPC

AppCAppBAppA

Figure 3. Example of a scenario in which information from the knowledge
base can be used to guide placement of DMA buffers

base can be used to infer where best to locate the DMA buffer(s)
according to the capabilities of the hardware and the observed be-
haviour of the applications.

Given that App-B must fetch its data across the system intercon-
nect (for example, HyperTransport), its performance will depend
on what proportion of the data it actually touches. If all bytes are
touched, it may be better to DMA directly into memory on Node1,
or to migrate the process to Node1. If only a few bytes are touched
then transferring the entire packet to Node2 would be an unneces-
sary waste of system interconnect bandwidth. To make an informed
decision about these tradeoffs, the operating system must estimate
the cost of non-local memory traffic due to App-B and weigh this
against the increased interconnect utilisation caused by NIC DMA
to a remote node. This information can be derived from changes
in the hardware performance counters whilst the process is running
and stored in the knowledge base.

5.3 Improved cache sharing
Another example where improved operating system knowledge ben-
efits the performance of applications is cache locality: on symmet-
ric multi-threading hardware, cores on the same die share an L2
cache, as shown in Figure 4. Shared caches lead to different per-
formance tradeoffs than private caches. If cores sharing a cache
access the same memory regions, they can benefit from each other;
in such a scenario, a cache miss by one core will cause a cache line
to be fetched, and the other cores sharing the cache therefore won’t
miss on the same access. On the other hand, if the cores sharing a
cache have many conflicting memory accesses (including reads), a
lot of extra cache misses can occur due to capacity limits.

Suppose an application does matrix multiplication in parallel and
its threads exhibit many interleaving memory accesses. In this
case it is beneficial when the application’s threads are scheduled
on cores of the same die, so they can benefit from the increased
cache locality, as they access memory on the same cache line.

When thread 1 accesses data on a cache line that is shortly there-
after also accessed by thread 2, as in the figure, thread 2 would
benefit from the improved latency of the warm cache.

The operating system needs to know the hardware topology to
be able to know how to optimally place the threads on the cores.
This information can only be inferred from the knowledge base.
Also, it needs to know that the threads are interleaving their mem-
ory access. This can be inferred by run-time observations of the
application’s behaviour through an on-line monitoring module.

Linux is able to achieve this goal by means of scheduler domains
[3]. Within this example, one would define a scheduler domain
for the two cores on the same die and the Linux scheduler would

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

Node1

Thread1 Thread2

Core2Core1

Cache1

Figure 4. Example of a scenario in which two threads on different cores but
on the same die share a cache line

keep threads affine to that domain. The knowledge base in this
case is hardcoded to the kernel: One writes an architecture-specific
domain initialisation function.

Again, scheduler domains represent an abstracted view from the
real hardware topology. They do not state the real interconnect
between CPUs and they ignore all other hardware interconnects.
This can become a problem when application behaviour changes.
If, within the example, thread 2 suddenly starts accessing memory
on another cache line, both threads start competing for cache lines
and are best scheduled on separate dies, having their own L2 cache.
It is not clear whether it is possible, but it is at least difficult to
define such a dynamic policy using scheduler domains.

6. CHALLENGES
In the preceding sections, we have argued that exploiting hetero-
geneous hardware can improve performance, and that representing
knowledge about the available hardware is important to do this. In
Barrelfish, the hardware knowledge base provides such information
to the system and applications.

There are several challenges in building such a knowledge base
and having different clients use it. One of the major challenges is
the design of the SKB itself, including designing the data structures
to store the hardware knowledge. There are three key requirements
for the SKB. First, it must have a sufficiently expressive representa-
tion to capture the full variety and complexity of hardware. Second,
it must enable clients of the service to make use of it without prior
knowledge of the range of hardware that might be available. Fi-
nally, there is a tension between the complexity of the information
available through the service and the runtime performance cost of
accessing that information. Therefore a “query fast-path”, with po-
tential degradation of accuracy or loss of detail, is also a necessary
component.

The challenge of the first two requirements has been explicitly
acknowledged in distributed systems for some time, where the ap-
proach has been to represent knowledge about services and net-
works in a machine-readable format. In the early days of name
servers and service trading this was typically a set of name-value
pairs. More recently, the matchmaking approach used in Con-
dor [27] enables a system to match requests with available resource
offers. In the modern world of web services, resource description is
accomplished using various subsets of first-order logic such as the
resource description framework and the OWL-DL web ontology
language from the W3C.

Another challenge comes in populating the SKB with all the rel-
evant information. Some information will come from static knowl-
edge or once-off inspection of the hardware, however we will also
require online profiling and information gathering services which

measure the hardware’s behaviour as well as the utilisation of de-
vices. There is a trade-off here between the frequency and de-
tail level of updates, the resources consumed to perform these up-
dates, and the real performance gains enabled by having more re-
cent knowledge in the SKB. The system needs criteria for decid-
ing when more frequent updates will improve performance, and
at which point the overall system starts to slow down, and thus
less frequent updates would be better. The impact of performance
monitoring can also be minimised by exploiting concurrency where
possible, running analysis or monitoring tasks on a spare core or in
idle processor cycles.

Performing online measurements and driving policies from the
acquired knowledge should not conflict with the fast path of the sys-
tem, because there should be no knowledge-base queries on the fast
path. The final challenge is therefore to structure the performance-
critical parts of the system that allows knowledge base operations
to be moved out of band and operate concurrently with the rest of
the system.

7. CONCLUSION
This paper has argued that core diversity and system diversity, while
not a short-term barrier to exploiting multicore processors in general-
purpose operating systems, will become so in the future as a conse-
quence of scale and heterogeneity. As such, it is an important area
of long-term systems software research, and complements current
NUMA performance work.

We have described our approach to dealing with this challenge,
in the context of Barrelfish, a from-scratch research operating sys-
tem. We introduce the system knowledge base, a logical represen-
tation of hardware complexity, that serves as a queryable repository
of system information derived from a combination of resource dis-
covery, online measurement, and a priori knowledge, and outlined
some of its uses.

We are now in the process of implementing Barrelfish, includ-
ing the system knowledge base. The system currently boots on
multiple cores, gathers hardware performance data, and populates
an initial version of the knowledge base with information obtained
from PCIe enumeration.

References
[1] APPAVOO, J., AUSLANDER, M., DA SILVA, D., KRIEGER,

O., OSTROWSKI, M., ROSENBURG, B., WISNIEWSKI,
R. W., XENIDIS, J., STUMM, M., GAMSA, B., AZIMI, R.,
FINGAS, R., TAM, A., AND TAM, D. Enabling scalable per-
formance for general purpose workloads on shared memory
multiprocessors. IBM Research Report RC22863, Jul 2003.

[2] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., BUR-
NETT, N. C., DENEHY, T. E., ENGLE, T. J., GUNAWI,
H. S., NUGENT, J. A., AND POPOVICI, F. I. Transforming
policies into mechanisms with Infokernel. In 19th SOSP (Oct
2003), pp. 90–105.

[3] BLIGH, M. J., DOBSON, M., HART, D., AND HUIZENGA,
G. Linux on NUMA systems. In Ottawa Linux Symp. (Ot-
tawa, Canada, Jul 2004), pp. 89–101.

[4] BRYANT, R., AND HAWKES, J. Linux scalability for large
NUMA systems. In Ottawa Linux Symp. (Ottawa, Canada, Jul
2003), pp. 83–95.

[5] CAŞCAVAL, C., DUESTERWALD, E., SWEENEY, P. F., AND
WISNIEWSKI, R. Performance and environment monitoring
for continuous program optimization. IBM J. for Research &
Development 50, 2/3 (Mar 2006), 239–248.

[6] DISTRIBUTED MANAGEMENT TASK FORCE, INC. Common
Information Model (CIM) Standards. Portland, OR, USA,
Apr 2008. http://www.dmtf.org/standards/cim/.

[7] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, JR., J.
Exokernel: An operating system architecture for application-
level resource management. In 15th SOSP (Copper Mountain,
CO, USA, Dec 1995), pp. 251–266.

[8] FRANKE, H., NAGAR, S., KRAVETZ, M., AND RAVIN-
DRAN, R. PMQS: scalable Linux scheduling for high end
servers. In ALS’01 (Nov 2001), pp. 71–85.

[9] GAMSA, B., KRIEGER, O., APPAVOO, J., AND STUMM, M.
Tornado: Maximising locality and concurrency in a shared
memory multiprocessor operating system. In 3rd OSDI (New
Orleans, LA, USA, Feb 1999), USENIX, pp. 87–100.

[10] HELD, J., BAUTISTA, J., AND KOEHL, S. From a few cores
to many: A tera-scale computing research overview. White
paper, Intel, Sep 2006. ftp://download.intel.com/research/
platform/terascale/terascale_overview_paper.pdf.

[11] IBM. Cell Broadband Engine Progamming Handbook,
1.0 ed., Apr 2006.

[12] KLEEN, A. A NUMA API for Linux. Technical Whitepaper
462-001437-001, Novell, Apr 2005. http://www.novell.com/
collateral/4621437/4621437.pdf.

[13] KRAVETZ, M., FRANKE, H., NAGAR, S., AND RAVIN-
DRAN, R. Enhancing Linux scheduler scalability. In Ottawa
Linux Symp. (Ottawa, Canada, Jul 2001).

[14] KRIEGER, O., AUSLANDER, M., ROSENBURG, B., WIS-
NIEWSKI, R. W., XENIDIS, J., DA SILVA, D., OSTROWSKI,
M., APPAVOO, J., BUTRICO, M., MERGEN, M., WATER-
LAND, A., AND UHLIG, V. K42: Building a complete oper-
ating system. In EuroSys Conf. (Leuven, Belgium, Apr 2006),
pp. 133–145.

[15] LAMETER, C. Local and remote memory: Memory in
a Linux/NUMA system. ftp://ftp.kernel.org/pub/linux/kernel/
people/christoph/pmig/numamemory.pdf, Apr 2006.

[16] LIEDTKE, J. Improving IPC by kernel design. In 14th SOSP
(Asheville, NC, USA, Dec 1993), pp. 175–188.

[17] MALL, M. AIX Support for Memory Affinity. IBM Corpora-
tion, Armonk, NY, USA, Jun 2002.

[18] NARAYANAN, D., AND SATYANARAYANAN, M. Predic-
tive resource management for wearable computing. In Mo-
biSys’03 (May 2003), pp. 113–128.

[19] NOLL, A., GAL, A., AND FRANZ, M. CellVM: A homo-
geneous virtual machine runtime system for a heterogeneous
single-chip multiprocessor. Tech. Rep. 06-17, Nov 2006.

[20] OHSHIMA, S., KISE, K., KATAGIRI, T., AND YUBA, T. Par-
allel processing of matrix multiplication in a CPU and GPU
heterogeneous environment. In VECPAR (2006), pp. 305–
318.

[21] OIKAWA, S., AND RAJKUMAR, R. Portable RK: A portable
resource kernel for guaranteed and enforced timing behavior.
In 5th RTAS (1999), pp. 111–120.

[22] RAJKUMAR, R., LEE, C., LEHOCZKY, J., AND SIEWIOREK,
D. A resource allocation model for QoS management. In 18th
RTSS (Dec 1997), pp. 298–307.

[23] RAJKUMAR, R., LEE, C., LEHOCZKY, J. P., AND
SIEWIOREK, D. P. Practical solutions for QoS-based re-
source allocation problems. In 19th RTSS (Dec 1998),
pp. 296–306.

[24] RUSSINOVICH, M. Inside Windows Server 2008 kernel
changes. Microsoft TechNet Magazine (Mar 2008).

[25] SAHA, B., ADL-TABATABAI, A.-R., GHULOUM, A., RA-
JAGOPALAN, M., HUDSON, R. L., PETERSEN, L., MENON,
V., MURPHY, B., SHPEISMAN, T., SPRANGLE, E., RO-
HILLAH, A., CARMEAN, D., AND FANG, J. Enabling scala-
bility and performance in a large scale CMP environment. In
EuroSys Conf. (Lisbon, Portugal, 2007), pp. 73–86.

[26] SUN MICROSYSTEMS. Solaris memory placement op-
timization and SunFire servers. Technical white pa-
per, Mar 2003. http://www.sun.com/servers/wp/docs/mpo_v7_
CUSTOMER.pdf.

[27] THAIN, D., TANNENBAUM, T., AND LIVNY, M. Distributed
computing in practice: the Condor experience. Concurrency:
Pract. & Exp. 17, 2–4 (2005), 323–356.

[28] UHLIG, V. Scalability of Microkernel-Based Systems. PhD
thesis, Computer Science Department, University of Karl-
sruhe, Germany, Jun 2005.

[29] WISNIEWSKI, R. W., DA SILVA, D., AUSLANDER, M.,
KRIEGER, O., OSTROWSKI, M., AND ROSENBURG, B.
K42: lessons for the OS community. Operat. Syst. Rev. 42,
1 (2008), 5–12.

[30] WISNIEWSKI, R. W., AND ROSENBURG, B. Efficient, uni-
fied, and scalable performance monitoring for multiprocessor
operating systems. In 17th Int. Conf. Supercomp. (Phoenix,
AZ, USA, Nov 2003).

