
Generating trustworthy hardware/software I2C drivers for board
management controllers

Daniel Schwyn, Zikai Liu, Timothy Roscoe
Systems Group, ETH Zurich

At the heart of every modern server platform sits an embedded system called a board management controller (BMC) that
is responsible for the low-level functioning of the platform. Despite the critical nature of these systems, they are generally
not built as trustworthy systems. In this talk, we will give an update on our efforts to cyber-retrofit BMCs. The focus will
be on generating software/hardware I2C drivers from model-checked specifications.

At the seL4 summit in 2022, we presented our vision for trustworthy BMCs with seL4 as a separation kernel. By em-
ploying the cyber-retrofit strategy, we can use an existing Linux-based BMC implementation (OpenBMC), and gradually
migrate critical components into native seL4 tasks. One critical task of a BMC is to correctly configure the power and
clock distribution on the platform. The formal model we have developed allows us to generate configurations and transi-
tion sequences for power and clock. Built on that, the BMC then needs to communicate the configurations to the regulators
that are connected through chip-to-chip communication buses like I2C. To preserve the guarantees of the generated con-
figurations, we need to ensure that the communication is correct. We will give an update on the trustworthy BMC project
overall but focus on our work to generate correct I2C stacks from specifications.

Unlike memory-mapped devices which have one-to-one interfaces with the BMC, multiple I2C devices may share the same
bus, creating a group of devices interacting with each other. Quirks of one device can influence the correct communication
of the whole assemblage. Therefore, to produce a correct driver stack for I2C, we need to consider the specification of not
only the I2C controller but all devices on the bus.

In this talk, we will present Efeu, a framework that allows us to specify both the host-side driver and the peripherals. The
entire system is then model-checked for interoperability using Spin1. This ensures that any quirks in the peripherals are
correctly handled by the host-side communication stack and that the peripherals do not hazardously interfere with each
other. The specifications are composed of layers, which enables swapping out a layer of the communication stack in
which a device might have a quirk while reusing the specifications for the rest of the stack without code duplication. We
envision building up a library of device specifications to amortize the specification effort across multiple systems.

From the specifications, we can generate implementations for the host-side stack. Efeu can generate both software and
hardware implementations. The software implementations target seL4, but could also address other operating systems.
The hardware implementations can be materialized on programmable hardware such as Field Programmable Gate Ar-
rays (FPGAs). While BMCs used to be based on low-cost micro-controllers, the industry is increasingly adding computing
power to them, including FPGAs2.

Efeu can furthermore generate combined software/hardware stacks. The split point between hardware and software can
be chosen at compile time. This allows the implementation to be adapted to system constraints. For example, if an
existing hardware I2C controller must be used (due to performance requirements for example), we can model it as a part
of the specification and let the model checker assert its interoperability with the peripherals (possibly with quirks). If the
checking shows that the system is not inter-operable, we may fall back on instantiating a bit-banging driver at the cost
of performance. On the other hand, if there exists an FPGA on the BMC module, the hardware parts of the stack can
be implemented on it. We can then choose a split point that optimizes for a given metric such as CPU usage, latency or
FPGA utilization.

We evaluated Efeu-generated I2C stacks on a Zynq MPSoC and show that generating the full communication stack from
verified specifications is not only practical but that the resulting implementation can saturate the I2C bus and achieve
competitive performance with off-the-shelf solutions. We also show that by varying the split point between hardware and
software, we can explore the trade-offs mentioned above and select the most appropriate split point for a given system.

Efeu closes the gap between the power manager and the hardware in our trustworthy BMC stack. We also believe that the
methodology used in Efeu can be applied to other buses, the ultimate goal being PCIe.

1https://spinroot.com
2https://opensource.antmicro.com/projects/artix-dc-scm/

1


