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Abstract
We present a technique for partially replicating data items
at scale according to expressive policy specifications. Re-
cent projects have addressed the challenge of policy-based
replication of personal data (photos, music, etc.) within a
network of devices, as an alternative to centralized online
services. To date, the policies supported by such systems
have been relatively simple, in order to facilitate scaling the
policy calculation to large numbers of items.

In this paper, we show how such replication systems
can scale while supporting much more expressive policies
than previous schemes: item replication expressed as con-
straints, devices referred to by predicates rather than ex-
plicitly named, and replication to storage nodes acquired
on-demand from the cloud. These extensions introduce con-
siderable complexity in policy evaluation, but we show a
system can scale well by using equivalence classes to reduce
the problem space. We validate our approach via deploy-
ment on an ensemble of devices (phones, PCs, cloud virtual
machines, etc.), and show that it supports rich policies and
high data volumes using simulations and real data based on
personal usage in our group.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; D.1.6 [Software]: Programming Tech-
niques—Logic Programming

General Terms
Algorithms, Design, Experimentation

Keywords
Replication systems, overlay networks, cloud computing,
mobile phones
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1. INTRODUCTION
This paper presents a technique for policy-based replica-

tion in a network of personal devices, both physical and
virtual. We show how to flexibly replicate data in response
to a rich set of policies in a way that is robust in the face of
devices entering and leaving the system, and with the option
to dynamically acquire new resources (virtual machines and
cloud storage) in response to changes in workload and policy,
if this results in a “better” configuration of the system.

Managing a user’s personal data (photos, contacts, music
collection, etc.) is a long-standing problem with, as yet, no
effective solution [4, 18, 22, 29]. Achieving this without rely-
ing on large, online service providers like Facebook or Google
is a topic of considerable research interest [24,26,30,31], since
a personal approach retains a greater degree of privacy, and
is resilient in the face of a provider becoming insolvent, or
the victim of a large-scale compromise of private data.

The scenario can be summarized as follows: a user owns
a small (fewer than 20) collection of different devices, which
might include phones, tablets, laptops, home machines, and
virtual machines and associated storage rented from cloud
providers such as Amazon. This constitutes the user’s per-
sonal cloud. The user acquires and (less frequently) modifies
new data items, by taking photos and videos, downloading
music and documents, and editing contacts.

The goal is to preserve this growing body of personal data
by replication, and make it selectively available according to
the user’s applications and needs, specified as a set of repli-
cation policies. The problem is complicated by the limited
resources on some nodes (such as mobile phones), the band-
width required to replicate data quickly, and the fact that
the set of devices involved can change suddenly (e.g., due to
failure, theft, or purchase of new hardware).

Our contributions here are to demonstrate that the range
of allowable policies (i.e., the expressivity of the policy lan-
guage) can be dramatically increased over previous systems
without sacrificing scalability. We show (i) how replication
policies for personal data can be written independently of
specific devices, and can even result in the system acquiring
and releasing virtual resources on-demand, (ii) how such a
system can react to changes in the environment such as fail-
ures or network outages to preserve policy goals, and (iii)
how to scale rich policy calculations up to large numbers of
data items with only modest requirements in memory and
computation, using equivalence classes.

We validate our contributions in Anzere, a storage system
for personal clouds, integrating personal computers, mobile
phones, tablets, and virtual machines dynamically acquired



on both Amazon EC2 and PlanetLab, and evaluate it using
personal data from a member of our group.

The rest of the paper is organized as follows. In the next
section, we motivate our work and review related work. We
then elaborate on our target scenario, and identify the key
properties a personal storage system should provide. Sec-
tion 4 presents our policy model, and a description of the
Anzere implementation is given in Section 5. We evaluate
the system in Section 6, and conclude in Section 7.

2. BACKGROUND AND MOTIVATION
Automatic personal data management is the motivation

for our work. Recent user studies have shown that, de-
spite a plethora of commercial point-solutions for backup
and synchronization, people still find it difficult to manage
their multiple personal devices [4,18,22,29]. Oulasvirta and
Sumari have studied practical problems people face in syn-
chronizing devices [22], for example their laptops can be
automatically backed up to a file server, but their smart-
phones cannot easily access this server. On the other hand,
the option of storing all data on smartphones is not always
viable due to limited storage capacity. People find ad-hoc
solutions to such problems, such as carrying more devices,
anticipating future needs by copying data to appropriate lo-
cations, and manually synchronizing their data when most
convenient (e.g., before leaving for a trip).

Dearman and Pierce [4] report that people synchronize
their devices, using portable media, emailing files to them-
selves, network data sharing, or using third-party external
servers [6, 11, 35], but not without the risk of loosing their
data as recently reported in the news [1]. All these tech-
niques have serious limitations: they require special config-
uration, cannot handle all types of files, and/or raise privacy
and reliability concerns. File synchronization tools are rarely
adopted by regular users partly because they rarely orga-
nize their personal data through hierarchical naming, but
instead use data attributes [18, 29] and higher-level search
interfaces [10,35,37].

Motivated by these problems, several recent policy-based
replication systems have been proposed. Closest to our work
are Perspective [30] and Cimbiosys [26]. Both address the
challenge of personal data storage with support for content-
based partial replication. Perspective, designed for home
devices, provides a semantic file system interface based on
the concept of view, a query which defines a set of files to
be stored on a specific device. Cimbiosys allows users to
selectively distribute data across their devices by associat-
ing content filters with each device. Devices exchange data
and filters through opportunistic peer-to-peer synchroniza-
tion; the system guarantees filter consistency using an ef-
ficient compact log structure for performance. Perspective
replicates filters on all devices, and assumes they change in-
frequently, whereas Cimbiosys allows incomplete knowledge
of other replicas and frequently-changing filters using filter-
based synchronization trees.

Eyo [31, 32], a storage system for personal media col-
lections, fully replicates policies and all content metadata
across all devices – content and metadata are managed sep-
arately. The system offers a device-transparent storage API,
where each device knows about all objects.

In all these systems, data is selected in policies using log-
ical predicates, but locations are specific devices; in this pa-
per we show how to relax this constraint to devices specified

by logical predicates and, indeed, acquired on-demand if nec-
essary. Like Eyo, Anzere fully replicates content metadata
and policies, but policies are evaluated by an elected coor-
dinator. We show that this approach deals efficiently with
filter changes and adapts to changing network topologies.

EnsemBlue [23], a distributed file system for PCs and
consumer electronic devices, provides content-based par-
tial replication through persistent queries, which specify the
data an application is interested in receiving. Matching op-
erations on files are logged by the file server in records that
can be retrieved by the client. We share with EnsemBlue
the device ensemble concept and diversity of the storage
elements. We differ in that our goal is to enable data man-
agement through device-independent policies and extend the
ensemble to dynamically-acquired cloud resources.

PodBase [24, 25] is a system for storage management
across a household’s personal devices. PodBase’s goal is
to ensure that data is replicated on enough devices to toler-
ate failures (data durability) and that replicas are placed on
devices where they may be needed (data availability). We
share with PodBase the self-managing aspects, and the gen-
eral goal of automatic data management. PodBase, however,
does not focus on providing a policy-based interface for the
support of flexible replication requirements. We show that
the data durability and availability properties PodBase tar-
gets can be expressed by our policy language.

Older systems provide partial replication, but without
policies for semantic data management. Coda [14] allows
mobile devices to cache files and use hoarding priorities to
specify interest, such clients can work disconnected and rec-
oncile later. Coda uses a centralized topology. Ficus [12]
and Pangea [28] provide partial replication and topology in-
dependence, but without arbitrary consistency guarantees.

In contrast, PRACTI [3] allows applications great free-
dom to tune consistency, and supports partial replication
and topology independence. Our runtime is partly based on
the design of PRACTI, which in turn borrows ideas from
Bayou [33] and TACT [40]. Above a PRACTI-like repli-
cation system, we add semantic data management through
replication policies which are integrated in a larger runtime
that does overlay management, resource monitoring, and dy-
namic acquisition of cloud resources.

Many of these systems offer additional functionality in
areas orthogonal to those studied in this paper; for exam-
ple, Cimbiosys provides a powerful access control model [36].
We feel the techniques in this paper are complementary – a
practical system would incorporate most, if not all of them.

3. TARGET SCENARIO AND ENVIRON-
MENT

Anzere is intended for personal clouds, personal ensembles
of owned machines (mobile devices like phones and tablets,
laptops as well as fixed computing devices like PCs) which
can be dynamically extended to incorporate also rented
cloud resources (e.g., from Amazon EC2), if advantageous
for the overall system configuration.

Personal clouds are highly heterogeneous. They consist of
both physical and virtual resources, storage capacities range
from a few GB to terabytes on cloud resources, processors
vary from embedded systems to server-class processors, link
speeds range from wireless to 10Gb Ethernet, and pricing
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Figure 1: The personal cloud network of our repre-
sentative user. This is also the hardware setup for
our experiments.

structures vary from expensive, metered 3G connections to
backbone links.

As a driving example, this paper uses a concrete hardware
configuration and a real data set, extrapolating from this
where necessary to investigate scaling and tradeoffs.

The hardware configuration, which we use also for our
experiments in Section 6, is shown in Figure 1. It comprises
an office desktop PC, a home PC server, a laptop, a Nokia
N900 smartphone, and a few virtual machines on Amazon
EC2 and PlanetLab (the number varies according to the
system’s policy decisions). The home PC and phone have
private IP addresses, and use the virtual machines for NAT
traversal as described in Section 5.

The data set, obtained from a member of our research
group, is summarized in Table 1. Making strong claims
about how representative this data set is would require a
full user study and be beyond the scope of this paper, but
it does provide us with a starting point grounded in reality.

We see that data is not replicated fully on all devices; in-
stead, partial replicas of data collections are created on dif-
ferent device subsets. In this data set, the music collection
has a master copy on the home server, with subsets repli-
cated on laptop, office PC, and phone. For photos, however,
the creation of partial replicas does not follow an obvious
pattern – there is no master replica, photos on camera are
not backed up anywhere else, a subset of the phone’s photos
is replicated on the laptop. A cloud-based web host stores
a (perhaps public) photo subset. The number of videos of
this user is relatively small, but this might well increase in
the future.

We asked our representative user which goals drive such
a data distribution, and gave us the following explanation:

• Backup (as soon as possible) photos as well as videos
taken with the camera and the mobile phone on the
home PC server. If travelling and the home PC server
is not reachable, make a copy of the files on the laptop
and ultimately have the laptop synchronized with the
home PC.

• Regularly check that enough free storage space is avail-
able on his phone and camera. In particular, make sure
to empty the camera’s memory card when returning
from a trip.

• Avoid uploading photos including portraits of himself,
relatives, and friends to the cloud. This is achieved by
manually checking every photo before uploading.

Table 1: The data distribution (file count and
size) of our representative user.

Device Photos Music Videos

HomeServer 6958 (8.1GB) 4904 (23.1GB) 53 (4.7GB)

Laptop 3291 (7.2GB) 932 (5.7GB) 10 (2.2GB)

OfficePC 0 (0) 3997 (19GB) 0 (0)

Phone 89 (38.5MB) 868 (4.3GB) 0 (0)

Camera 25 (56.5MB) 0 (0) 0 (0)

Cloud 4492 (5GB) 0 (0) 28 (435MB)

Total 9231 (13.2GB) 4904 (23.1GB) 56 (6.8GB)

• Store the entire music collection on the home PC
server, but have subsets of it on the office PC, laptop,
and phone. These collections are selected manually
and in an ad-hoc manner, but they tend to include fa-
vorite and most recent albums. As the phone’s music
collection cannot be as big as the one in the laptop and
office PC, the user would like this content to be period-
ically (e.g., weekly, monthly) refreshed such that new
content would be always available on his mobile or of-
fice devices. The user currently achieves this goal by
manually updating the phone’s collection, whenever he
remembers to do so.

Although this is only one example, it shows a common
pattern of use across users and suggests that applications
through which users manipulate their data could largely
benefit from richer replication policies to control and auto-
mate the placement of a user’s data across different devices.
Rather than the users manually classifying their photos and
moving them to the appropriate devices or cloud, an ap-
plication for generating photo albums, for instance, could
use a common face-recognition algorithm to automatically
classify any new photo into public or private and replicate
it accordingly. Likewise, rather than having users manually
refreshing their phone’s music collections, a music player ap-
plication could automatically use user-specific information
such as album’s rating, creation date, and last played date
to periodically refresh the content on the phone.

To support data replication in applications of this type,
the goals of Anzere are to:

• efficiently replicate user content according to a flexibly-
specified set of policies;

• react in a timely fashion to failures and changes in
data, policies, devices, or external conditions such as
hosting prices or network outages;

• allow intuitive specification of policies, which are not
tied to specific devices, since these change over time
– replacing a phone or buying an additional laptop
should not require any change in the policies;

• exploit (and decide to acquire or release) dynamic vir-
tual resources on demand, if necessary – that is, Anzere
should factor monetary cost, vulnerability, and perfor-
mance into its replication decisions;

• scale to large numbers of objects, and a reasonable
number of policy rules.



The key differences between these goals and those of pre-
vious systems are that the policy requirements are consid-
erably broader (variable number of devices, when to rent a
new VM, etc.), and devices are, like content, identified im-
plicitly using predicates rather than identifiers. This makes
policy reasoning more complex, and in the rest of this pa-
per, we show how to make it tractable in the face of such
flexibility. We assume a single-user model: one user owns
all replicas in the system.

4. POLICY MODEL
We now describe what can be expressed as policies in

Anzere. We do not expect users to directly use our nota-
tion; policies are better generated by user applications (e.g.,
music players, photo sharing applications, etc.) or composed
using graphical tools (e.g., a data distribution map across
devices), functionality we do not explore here. Instead, our
focus is what semantics can be expressed to the system.

We start with the data: a data item like a photo is repre-
sented as a pair of (content, metadata), where the content is
the binary data itself, and the metadata is a list of key-value
pairs. Metadata can be mutable, while, for the moment, we
assume content is immutable. As explained in Section 5,
Anzere also supports mutable content and offers high flexi-
bility in expressing its consistency requirements.

4.1 Device- and content-neutral policies
A replication policy, hereafter simply a policy, represents

a set of rules, filters, and constraints that applications es-
tablish to control where a user’s data is stored. A policy
might address requirements such as accessibility (“Replicate
recently-acquired music on a device the user carries”), dura-
bility (“Keep at least 3 distributed copies of the Ph.D. the-
sis”), privacy (“Do not upload private photos to the cloud”),
and capacity limits (”No more than 2GB on phone devices”).

Unlike existing systems, policies are independent of the
personal cloud for which they are initially specified. To
understand the advantage of this approach we consider a
simple example. The goal is to guarantee that photos
taken with the phone are replicated for durability. Cur-
rent replication systems (e.g., Cimbiosys, Perspective) ex-
press this requirement by generating a filter on the device
with id=myhomedesk for objects of type=jpeg and loca-
tion=myapplephone. In Anzere, the same requirement is
expressed through a policy requiring objects of type=jpeg
and location=phone to be replicated to at least one device
of type=fixed and with tag=owned.

The advantage of the second approach is that the replica
is not bound to a specific device. The policy can continue
to work when the connectivity changes (myhomedesk is not
reachable by myapplephone, but myofficepc can be used in-
stead), when the device set changes (the user buys a new
phone and calls it mynokiatablet) and in principle it can be
reused by other users.

4.2 Policy stratification
Anzere policies are sets of triplets <IP,R,DP>, comprising

an item predicate IP, a device predicate DP, and a relationship
R that must hold among the items and devices identified by
IP and DP. As in other such systems, we find it convenient
to express policies in a logic language (Prolog in our case).
Logical unification is a powerful technique for fusing infor-
mation from a set of heterogeneous sources, such as different

Policies

Items and 
devices

photos/anfora.jpeg

Something.mp3

Item and 
device 

metadata

item(photos/anfora.jpeg,’JPEG’,1272466300,public,…).

device(nokiaN900,mobile,phone,owned,0,…).

Item and 
device 

predicates

NokiaN900

HomeServer

picture_item(Itemid) :-
  item{itemid:Itemid,type:'JPEG'};
  item{itemid:Itemid,type:'PNG'}.

policy([[picture_item]],[rep,#>,2],[[any_device]]).

Automatic extraction of metadata
(e.g., ExifTool)

any_device(Devid) :-  device{devid:Devid}.

3

2

1

File system

Figure 2: Example of policy stratification. At level
1, facts describing data items and devices are auto-
matically generated from OS and application tools.
At level 2, item and device predicates are provided
in an Anzere library, maintained by developers. At
level 3, user applications use item and device pred-
icates to compose replication policies.

device and data types, and decoupling the system from a
predefined schema [34,38].

To illustrate, consider the example shown in Figure 2.
Item and device metadata are automatically extracted from
files and the device OS, and represented as Prolog facts. The
fact describing the item photos/anfora.jpeg says that it is a
JPEG photo, was created on 28.4.2010, and is public. The
fact for the device nokiaN900 says it is a phone, a mobile
device, owned, and with rental fee of $0.

The example shows how policy stratification works. De-
velopers specify item and device predicates, which are ap-
plied to low-level facts. Using these predicates, embedded
in an Anzere library, user applications can compose policies.
Specifically, at layer 2, the item predicate IP is picture_item

and the device predicate DP is any_device, defined through
simple inference rules – the set of items of type “photo” and
the set of available devices, respectively. At layer 3, a dura-
bility policy is defined requiring two replicas of every photo
exist in the system; R is rep>2, which means “replicate to at
least 2 devices.”

A more interesting example of policy is “make items modi-
fied in the last day accessible at no more than 100 ms latency
from the phone NokiaN900”:

mod_item(Op,Time,Itemid) :-
item{itemid:Itemid,moddate:Moddate},
mjd_now(MjdNow),
mjd_to_unix(MjdNow,UnixNow),
Diff is UnixNow-Moddate,
Func =.. [Op,Diff,Time], Func.

close_device(MyDevid,Devid,MaxLatency) :-
ollink{src:MyDevid,dst:Devid,latency:Latency},
Latency $< MaxLatency.

policy([[mod_item,#<,86400]],[repany],
[[close_device,’NokiaN900’,100]]).



close_device is a device predicate that selects devices reach-
able from the specified device within the given latency; it
uses ollink facts (produced by the monitoring infrastructure
described in Section 5.1) which report latency measurements
between any two devices in the overlay.

As shown through these examples, predicates can re-
fer to both immutable and mutable properties of an item
or device: item category (picture item), device ownership
(owned device) as well as time (mod item,#<,86400 ) and
locality (close device,’NokiaN900’,100 ). Multiple predicates
can also be specified in a single policy, hence the list syntax
for IP and DP at layer 3 in Figure 2.

Facts describing new types of item and device can be
added to the system on-the-fly. If a new pricing model for
cloud resources is introduced, or a user’s media files are now
classified using a new metadata schema, new inference rules
can translate between old and new schemas, and the system
can immediately start reasoning anew.

4.3 Replication through constraints
A given policy can be applied to a data set and device

ensemble in a variety of ways, many of which will be similar
in result but only a few of which will be efficient. Consider a
camera taking new photographs and two policies: 1: Repli-
cate mobile device files to at least one fixed device, and 2:
Replicate photos to a home device. If both policies are eval-
uated in isolation, in order, the camera may unnecessarily
upload each photo twice, e.g., to a PC in the office and a
server at home. A way to efficiently process the possible
policy combinations is needed.

Policies must also incorporate resource and cost con-
straints imposed by the environment. Mobile phones have
limited storage capacity, motivating moving old photos to
a better-provisioned device if they are no longer needed. If
backup in the cloud incurs a rental fee, a personally owned
device might be preferred.

These requirements make this a complex satisfaction prob-
lem and we apply constraint logic programming (CLP) to it.
We are not the first to do this: CLP has been used for sys-
tem administration [13] and network configuration [5, 20],
among other things. CLP programs are regular logic pro-
grams with added logical and numeric constraints, providing
a natural way to express policy requirements such as number
of replicas, device capacities, and cost limitations.

The problem consists of finding an allocation of data
in the personal cloud which satisfies the constraints.
Our formulation in CLP can be visualized as a 2-
dimensional matrix M whose columns represent the de-
vices and whose rows represent items stored. The vari-
ables are all the matrix cells, v(x,y), whose possible
values are 0 (do not store) or 1 (store). Each pol-
icy imposes constraints on matrix subsets, restricting the
possible values that can be assigned to its cells. For
example, policy([[IP]],[repany],[[DP]]) requires subma-
trix M(IP,DP )={(x,y)∈ M:DP(x)=True∧IP(y)=True∧v(x,y)=1}
to satisfy the constraint |M(IP,DP )| >1.

A CLP solver computes a set of variable assignments to
satisfy the constraints. The matrix solution is then trans-
lated into an execution plan by comparing the cells of the
old and new matrices. Pairs of cells yielding the same value
produce no action. Pairs with different values are such that
if the new value is 0 a delete(y,x) action is generated, and
if it is 1 a copy(y,z,x) action is generated, where z is a de-

vice that currently stores item y. Responsible nodes then
execute these actions.

A CLP solver can not only return a solution to the prob-
lem, but also allow for optimization by maximizing a given
objective function. For instance, an objective function might
minimize the distance between the current matrix (i.e., the
current data placement) and the new solution, where the
distance metric is bandwidth utilization. Another might
minimize the overall (monetary) cost for renting cloud re-
sources. It is straightforward to add other metrics, and
multi-objective optimization is possible using a weighted
sum of single objective functions.

Table 2 shows examples which illustrate the expressivity of
Anzere’s policy language. However, it should be clear from
the above description that this approach is unlikely to scale
well as the number of objects increases. In Section 5, we
show how equivalence classes generated dynamically from
the policy specification make this approach scalable.

4.4 Acquirable resources
Once we have cast the problem of applying policies ef-

ficiently as one of optimizing a set of possible actions, it
becomes straightforward to add additional types of actions,
with associated costs and benefits, to the basic framework.
We exploit this feature to acquire and release cloud storage
and computational resources on demand, if doing so results
in an overall benefit to the personal cloud ensemble.

Anzere factors the decision of acquiring cloud resources
in the policy evaluation itself. The decision is taken en-
tirely on-the-fly by the CLP solver. If the current set of
storage devices is not sufficient to satisfy the policy, Anzere
searches the possible states the system can achieve by incre-
mentally acquiring resources. Cloud resources simply add
new columns to the matrix model described above, the rea-
soning remains the same. For instance, a scenario we evalu-
ate in Section 6 is that of a synchronizing application which
besides synchronizing copies of a user’s data also lets the
user specify the maximum access time tolerable by specific
classes of data. The application uses policies such as policy
4 in Table 2. When the user is travelling abroad, the system
detects the increased latency to their home and office net-
work, and can decide to acquire cloud machines from data
centers close to the current user’s location. On these ma-
chines the system establishes temporary copies of data for
which the user requested fast access.

The release of cloud resources also occurs in an automatic
manner. Cloud VMs are released when no items are stored
on them any more, or constraints on rental fees require the
content to be copied to cheaper machines. For instance, a
policy such as policy 8 of Table 2 would eventually force the
system to cleanup unused cloud resources, such as in the
example above of the user travelling abroad (when the user
returns from the trip and devices re-acquire faster connec-
tivity, cloud VMs are released).

In this context, CLP optimization can be very useful. In
fact, the inclusion of cloud infrastructures brings a new in-
teresting variable to the problem: the price for renting VMs
and transferring data from/to them. Price constraints are
expressed through explicit cost policies or embedded in ob-
jective functions. Price models can become complex and
need to closely follow the changing pricing structures of dif-
ferent cloud providers. Nevertheless, we feel our approach
goes some way to being able to integrate such factors into



Table 2: Examples of Anzere policy expressing requirements such as fault tolerance, data availability,
resource management, privacy, and cost for renting cloud VMs.

Policy type Description Prolog policy

Fault 1. Music backup on a home device policy([[audio_item]],[repany],[[home_device]]).

tolerance: 2. Video backup on 2 fixed, owned devices policy([[video_item]],[rep,#>=,2],[[fixed_device],[owned_device]]).

Data: 3. 1-day old music on mobile devices policy([[audio_item],[mod_item,#<,86400]],[repall],[[mobile_device]]).

Availability 4. 1-day old photos on a fixed device at policy([[picture_item],[mod_item,#<,86400]],[repany],

100 ms from the laptop [[fixed_device],[close_device,’laptop’,100]]).

Resources: 5. 5GB free storage on phone policy([[any_item]],[size,#=<,5000000000],[[phone_device]]).

Privacy: 6. No private items in the cloud policy([[private_item]],[repnone],[[cloud_device]]).

7. Public photos in the cloud policy([[public_item],[picture_item]],[repany],[[cloud_device]]).

Cost: 8. Rental fee for cloud storage less than 10$ policy([[any_item]],[cost,#=<,10],[[cloud_device]]).

the behavior of the system, much as commercial offerings
like RightScale [27] attempt to do today for hosted services.

The number of ordinary users today using rented cloud
storage for their private files is rather limited. However,
Anzere represents a solution also for those users who pri-
marily deal with their own physical devices. More impor-
tantly, Anzere can provide an incentive for such users to
use cloud storage. By automating the selection, acquisition
and release of cloud resources, by offering a simple API for
controlling the cost for renting such resources, and by possi-
bly choosing the most adequate cloud infrastructure (based
on price and resource requirements) for each user’s require-
ments, the API to cloud computing infrastructures is ex-
tremely simplified, thus making cloud computing a viable
option also for regular users.

4.5 Composing Anzere policies
We do not expect users to deal with Prolog code.

Rather, we anticipate future applications using context-
specific knowledge or asking users a few questions to gen-
erate most policies on the user’s behalf. For example, we
have built a prototype photo album application for publish-
ing photos to the cloud, similar to the one our representative
user in Section 3 could use for sharing public photos. Users
select which photos to include in an album through proper-
ties such as size, format, time frame, and privacy, which are
automatically extracted from image metadata and using im-
age processing algorithms (e.g., a face recognition algorithm
classifies as private photos containing a specific person).

Another example of how existing applications could lever-
age Anzere’s policy language is prefetching. Existing ap-
plications (such as web browsers do today by setting their
maximum cache size) could integrate support for content
prefetching more extensively, and allow users to specify
properties such as freshness, overall size, and rating of the
content to be prefetched on specific devices. When con-
tent is generated on a device in the personal cloud, devices
matching the prefetching policy automatically receive such
content. For example, our representative user expressed the
need to have a means for automatically refreshing music con-
tent on the phone. Policy 3 in Table 2 could, for instance,
fulfill such a requirement.

Regardless of how policies are specified, conflicts between
them may prevent a solution from being found. Two sit-
uations can arise: In the first case, one or more policies

are issued which conflict with previously-specified policies
(e.g., the system requires 2 replicas in the cloud and a new
policy specifies that private data cannot be stored in the
cloud). The second case occurs when the device ensemble
suddenly changes, new data items are submitted or the data
properties change such that the current set of policies can
no longer be satisfied by the available resources (e.g., the
system requires two replicas for all objects within a fixed
budget which is exceeded by the generation of new items).
Currently, the system reacts simply by reporting detected
conflicts and waiting until they are resolved. In a single-
user situation, we expect such events to happen in isolation
and at a relatively low rate, allowing the feedback returned
to the application (and, ultimately, the user) to be accu-
rate enough to quickly identify the cause of the conflict. If
such events occur more frequently, a possible solution that
we have not yet explored is for the system to use its logs to
replay events in isolation and perform a root-cause analysis.

In general, users require a tool to globally manage the poli-
cies generated by applications. This can be achieved using
graphical tools which can provide an intuitive experience.
We think that users should be able to directly observe the
“effects”of their policy changes. For instance, if a user adds a
policy such as“do not store private photos in the cloud”, they
should be able to observe that some photos might now have
only one or even zero replicas. By understanding the effects
of a policy, it becomes easier to achieve the desired result.
Our focus in this paper, however, is to explore which policy
semantics can be expressed to the system, and how they can
be accomplished using a constraint-based approach.

5. IMPLEMENTATION
Anzere is implemented in Python and currently accounts

for approximately 32,000 lines of code (counted by David
A. Wheeler’s “SLOCCount”). The software architecture of
Anzere is shown in Figure 3. The main components are
the CLP solver, including the knowledge base (KB) which
stores the system’s state; a data replication subsystem pro-
viding flexible consistency and partial replication; and an
overlay network including sensors to monitor the network
and device status, and actuators to acquire (and release)
cloud resources on-the-fly. With the exception of the solver,
this code runs on all devices in the user’s personal cloud.

Anzere is engineered through a modular framework (in-
spired by the OSGi [21] module management system), which



Reasoning 
engine

(ECLiPSe)

Data replication
(PRACTI)

Consensus
(Paxos)

Datastore 
(Filesystem, Amazon S3)

Consistency
(TACT)

KB

ApplicationApplication
Application

Sensors

links data 
itemsloadstorage ...

Actuators

Amazon EC2 PlanetLab ...

O
verlay netw

ork

D
ata replication subsystem

C
LP

 solver

Routing

Figure 3: The Anzere system architecture. Main
components are the overlay network (sensors, actu-
ators and routing functionality), the CLP soler, and
the data replication infrastructure. This software
stack runs on each node in the personal cloud net-
work with the exception of the CLP solver which
runs only on well-provisioned nodes.

not only enables easy system maintenance, but also allows us
to customize the functionality running on each device based
on its hardware/OS, as well on the role the node plays in
the system (overlay coordinator, member). The CLP solver
and knowledge base, for instance, do not run on phones, but
are instead located on well-provisioned coordinator nodes.
Specialized sensor modules for phones, PlanetLab, Amazon
EC2 are included only in the corresponding distributions.

The overlay network of Anzere leverages the Rhizoma [39]
infrastructure used by distributed applications running
across PlanetLab for resource management. Rhizoma uses
a number of sensor modules to monitor the status of Plan-
etLab nodes, and thus enables applications to dynamically
react to changes in load and failures. Anzere reuses Rhi-
zoma’s overlay protocols for membership management and
failure detection, and PlanetLab-specific sensor and actua-
tor modules, but adds equivalent functionality for personal
devices and other cloud infrastructures.

5.1 Sensors and knowledge base
The KB stores a representation of the system’s distributed

state in the form of Prolog facts. This information is col-
lected through overlay and storage sensors, running on every
node in the ensemble.

Overlay sensors monitor the status of the network, de-
tect failures, and collect information such as device type and
status, number and type of network interfaces available, la-
tency and bandwidth between any two devices. The main
facts carrying this information are:

device(devid,location,type,cost,processor,mem,disk).
olnode(hostname,cpuspeed,freecpu,fiveminload,mem,freemem,gbfree).
ollink(src,dst,link-type,latency,bandwidth).

Storage sensors inform the KB about policies, item meta-
data (extracted from files using ExifTool [7]), and so-called
item2dev information, i.e., a summary of which items are

stored at the node. This information is essential for the
CLP solver to build a map of the current data distribution
and react to changes in policy and new items. In the KB,
the facts embedding this information are the following:

policy([[item_pred]],[relation],[[device_pred]]).
item(itemid,type,size,createdate,moddate,tag).
item2dev(itemid,devid).

Data collected through the overlay sensors is replicated
across a few resource-qualified nodes (i.e., nodes that can
afford to take over the role of coordinator and run the CLP
solver in case of coordinator failures), while storage sensor’s
information is replicated across all overlay nodes (the over-
head is relatively small, e.g., metadata describing 20,000
items accounts for about 6-8 MB).

5.2 CLP solver and equivalence classes
Policy evaluation in Anzere is centralized around one over-

lay coordinator node running the CLP solver. This node is
typically a well-provisioned node such as an office or home
desktop PC as well as a cloud VM. Phones and tablets are
never elected as coordinators. The coordinator does not rep-
resent a single point of failure because the overlay is capable
of dynamically electing a new coordinator if the old one fails
or disconnects. However, a legitimate concern is whether
this represents a scaling bottleneck. As we will show in Sec-
tion 6, this centralized approach has not caused any perfor-
mance degradation or scalability issues in system operation.
Liveness is guaranteed by replicating the KB across all or a
few other overlay nodes, to speed up recovering from a lost
coordinator.

As CLP solver we use the ECLiPSe [2] constraint solver,
written in C and Prolog. ECLiPSe is based around a Prolog
interpreter with various added libraries for search methods,
constraint programming, and interfaces to external solvers.

As the reasoning must be done online, scalability is a pri-
mary concern in our CLP implementation. We expect the
number of devices in a personal cloud to be small (fewer than
20), and so unlikely to be a scaling problem. Yet, the num-
ber of data items may be large, and grows over time. This is
potentially an issue for the policy engine, which might need
to optimize placement of hundreds of thousands of objects.

To ensure this problem is tractable, we group data items
into equivalence classes. From the IPs present in the active
policies, the CLP program directly derives the smallest set
of equivalence relations which allow the item set to be parti-
tioned into disjoint subsets, namely the equivalence classes.
Let us assume a system managing a user’s picture, video,
and audio items, and two policies:

policy([[picture_item][private_item]],[repany],[[owned_device]]).
policy([[audio_item]],[rep,#>=,1],[[fixed_device]]).

The program computes four equivalence relations:

[[picture_item],[private_item]]
[[picture_item],[public_item]]
[[audio_item]]
[[video_item]]

The number and type of equivalence classes as well as
the granularity of how data is aggregated into such classes
is derived directly from the user’s policies, specifically the
IPs present in the user’s active policies. By doing so, the
number of classes is much smaller than the number we would



obtain by considering all possible combinations of metadata
properties, which would be exponential. Moreover, unlike
metadata, IPs are boolean predicates, thus ensuring a finite
number of combinations.

Having introduced equivalence classes, the matrix model
described in the previous section does not refer anymore
to item identifiers but instead to equivalence classes. This
enormously reduces the number of variables the CLP solver
has to manage, and hence its solving time. As we show in the
evaluation section, equivalence classes bring a substantial
performance improvement to the system.

The solution provided by the CLP solver consists of an
action plan for different Anzere nodes to execute. Actions
are either copy or delete. These actions are performed using
the replication subsystem’s API. If the destination node of
an action is a cloud resource which is currently not present
in the network overlay, the corresponding cloud actuator is
invoked and the node is dynamically acquired and added
to the overlay, such that the action can complete. The
solver periodically re-calculates the execution plan to incor-
porate new items and policy variations, as well as to react
to changes in the device status and topology (e.g., “device
within 100 ms access latency from the phone”). Policies
with time relationships (e.g., recently modified items) also
require the CLP solver to periodically run – continuous time
requirements are approximated. We have not explored yet
an event-driven invocation of the solver, e.g., invoking the
solver only when substantial changes have occurred in the
environment or the action load generated by previous runs
is low.

Generating and applying the action plan in an uncertain
environment with unreliable network connectivity, where de-
vices can fail or be turned on and off dynamically, requires
some care.

First, actions should not be generated every time a condi-
tion in the environment changes, otherwise the system may
become unstable. For instance, route flapping can cause the
network latency to change rather often and mobile devices
can disconnect frequently. As explained later, the overlay
network smooths these variations such as only stable net-
work changes are processed by the solver. In general, one
option we have not yet investigated is to let the user di-
rectly trade the responsiveness and stability of the system.
Some users might be willing to tolerate a delay in the appli-
cation of their policies if this implies a more stable system,
while other users might prefer the opposite. This trade-off
might even be specified on a per-policy or per-data granu-
larity, thus allowing users to prioritize their policy and data
treatment.

A second class of challenges concerns the execution of the
actions. An action plan might not be fully executed before
some of the responsible devices are turned off, and actions
happen asynchronously. For instance, in a näıve implemen-
tation an item could be deleted by a device before a copy
of the same item is executed. To deal with these issues,
the coordinator node running the solver needs to maintain
a coherent view of the system state. Each time a device
completes an action, an acknowledgment is sent to the co-
ordinator (in the form of item2dev fact). A move action is
implemented as a copy followed by a delete. Only after the
copy has completed, the coordinator issues a delete. Thus,
at any point in time, the coordinator has an up-to-date view
of which items are present on which devices. If some devices

are turned off before completing their execution plan, the
coordinator knows their latest status and can re-issue re-
quests for missing actions, if the devices come back before
the next policy evaluation. In this way, unnecessary requests
are avoided and policies are enforced in a timely manner.

We ran into cases where thousands of actions were re-
quested together (e.g., when simulating the permanent crash
of a home PC) and could not be completed before the next
solver invocation, or completed without updating the KB
due to delayed acknowledgments. To avoid duplicated action
requests, Anzere keeps a queue of pending actions, which are
removed from the queue upon completion or timer expiry.

5.3 Data replication subsystem
Anzere uses the replication subsystem to replicate user

data as well as information necessary for the system opera-
tion (e.g., overlay and storage sensors’ information).

For Anzere it was important to support the three PR-
AC-TI [3] properties: Partial Replication is necessary to ad-
dress the different resource requirements of a heterogeneous
ensemble of devices; Arbitrary Consistency permits tuning
the cost of consistency when dealing with different types of
mutable content; Topology Independence is a requirement
for the entire system to ensure device failures and mobility
do not compromise system operation. Our implementation
builds on existing replication techniques, in large part on
PRACTI, but also TACT [40], Bayou [33], and Paxos [16].

As in PRACTI, partial replication is achieved through
separation of bodies and invalidations. Bodies, stored in the
datastore (e.g., file system), contain the actual value of the
writes. Invalidations are metadata describing write oper-
ations, in the form <itemID,logical-time> – logical-time is
the Lamport clock of the node generating the write. Precise
invalidations are sent to a node only if it has subscribed for
that item. Imprecise invalidations summarize the informa-
tion of several writes, and are sent to all nodes in the overlay,
thus allowing each node to maintain consistency invariants
despite partial replication. To perform read and write op-
erations locally, each node maintains a log of received in-
validations and stores bodies in a checkpoint. Every time
an invalidation is received, it is stored in the log and the
checkpoint is updated. For instance, if the invalidation re-
ports a write to “item123”, the entry “item123” is marked as
“invalid” until the new body is received.

Invalidations are exchanged via a causally-ordered stream.
A protocol similar to Bayou’s log exchange protocol (based
on version vectors and logical time) is used to efficiently se-
lect a sender’s updates which are needed by a receiver. This
mechanism ensures that each node’s state reflects a causally
consistent view of the system. To achieve sequential con-
sistency Anzere uses Paxos: all nodes in the overlay reach
consensus on the total order of all invalidations.

The combination of these protocols provides the basis for
a broad range of consistency guarantees. Specifically, consis-
tency can be specified on a per-item basis (at item creation)
as well as on a per-read, per-write basis. For example, a
blocking read requires the system to first fetch the latest
version of the item, while a non-blocking read returns the
local copy. Likewise, writes can be performed locally if the
consistency requirements associated with the item and the
write itself allow, otherwise the latest copy of the item must
be first obtained. The system provides a continuous range
of consistency levels through the concept of conit-based con-



tinuous consistency of the TACT system. Each item belongs
to a conit. A conit limits the current order deviation, which
is the number of writes that occurred without synchronizing
with other nodes. Every time the order deviation exceeds
the conit, Paxos is invoked such that the outstanding writes
are committed in a sequentially consistent order. In addition
to conits, one can specify bounds on the number of outstand-
ing invalidations. This conits and invalidation bounds allow
an application to tune consistency at runtime.

Using these techniques, copy and delete actions are im-
plemented. Besides copying or deleting the file content on
the specified nodes, this involves updating subscriptions and
invalidation streams across the interested nodes such that
consistency can be guaranteed.

5.4 Overlay network and actuators
The third PRACTI property (topology independence) is

achieved using a self-managing overlay network. An over-
lay node is elected as coordinator, while the others act as
members. The election mechanism can be based on any de-
vice attributes (e.g., resource availability, location, owned
vs. rented device, etc.). In case of coordinator failure or
overlay partition, a new coordinator is re-elected automati-
cally and liveness is guaranteed by replicating the KB across
a few overlay nodes.

Although a user’s personal cloud is generally small, its
complexity arises from the heterogeneity and instability of
its resources. Overlay sensors allow the coordinator to detect
and react to events such as node failures, variations of link
quality, introduction of new network links as well as cloud
outages. To avoid flapping in the network measurements,
the coordinator maintains a moving average of the last few
hours of operation. Devices voluntarily (and temporarily)
leaving the overlay directly inform the coordinator, while
events such as permanent loss or replacement of a device
are reported by the user and are treated differently (e.g., a
temporary failure of the home PC is treated differently from
a permanent crash).

Paxos also does not restrict the topology. If acceptors de-
tect a proposer’s failure or if a new acceptor wants to join
the current group configuration (called view), a view-change
is initiated. A group member proposes a new view-id on
which all members have to agree, and can then form a new
view. The protocol ensures that only one view is established
at the time [17]. In extreme cases (more than 50% of the de-
vices are simultaneously turned off), the elected coordinator
creates a new Paxos view (as done at system bootstrap).

Overlay routing also uses logic to reason about the di-
verse network and device types and provide path optimiza-
tion based on latency, bandwidth, and price. For instance,
using information about available interface types and node-
to-node latency, the routing module can setup a minimum
latency path “phone-laptop-cloud” which uses the phone-
laptop Bluetooth link and the laptop-cloud Ethernet link.
The experiments we present use such mechanisms to auto-
matically connect devices residing in private IP networks.

Finally, actuators are modules that allow the overlay to
dynamically add extra cloud resources to the overlay. The
decision on when and which resources to add or remove is
taken by the CLP solver and communicated to actuators
through acquire and remove actions. Adding a node to the
overlay implies copying onto it the code necessary for run-
ning Anzere. At startup the node contacts the coordinator

Figure 4: Anzere management interface.

(whose address is provided by the actuator), joins Paxos,
and synchronizes with the system state. We currently sup-
port actuators for Amazon EC2 and PlanetLab.

5.5 Debugging Anzere
Our current system prototype uses the web interface

shown in Figure 4 for debugging purposes. The interface
allows developers to keep track of which devices are on-
line, browse or add content, edit their policies, and monitor
the solver’s execution. In particular, the debugging window
shows the output of the CLP solver, copy and delete actions
and duration of their execution. This is not by any means
intended to be the final UI that ordinary users should be
provided with.

6. EVALUATION
We evaluate how Anzere meets the following goals:

• quickly converging to finding a suitable data placement
in compliance with the specified policies and reducing
the computation complexity using equivalence classes;

• allowing applications tuning of the window of item vul-
nerability by varying the solving interval;

• reacting promptly to resource disruption and mobility
using acquirable resources.

Our target scenario is the one depicted in Section 3: a sin-
gle user model, with a dataset of 15,000–25,000 data items
and a policy sets of 20–30 policies. In the experiments, we
use a real personal cloud (shown in Figure 1) emulating the
configuration of such a user. The testbed consists of an of-
fice desktop PC, home PC, laptop, Nokia N900 smartphone,
and cloud resources (two Amazon EC2 VMs, one located in
Europe and one in US, and one PlanetLab VM). The usage
of cloud resources varies according to policy decisions. The
home server and the phone have private IP addresses, but
the Anzere routing module takes care of automatically es-
tablishing tunnels for these devices using the office PC or
cloud machines as traffic forwarders. The phone and laptop
use WiFi for communication.

At startup, the office PC acts as the overlay coordinator
and runs the CLP solver. All nodes participate in Paxos,
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Figure 5: Solving time vs. data set size.

and run the overlay sensors collecting information on de-
vice status and link performance. In the experiments, we
use a workload consisting of real-life samples of photo, mu-
sic, and video files, with average sizes of 1.1 MB, 3.3 MB,
and 4.2 MB, respectively. Metadata files, generated using
ExifTool [7], are about 300–400 bytes large. We start with
evaluating the CLP solver performance and then analyze the
full system in operation.

6.1 Policy sustainability
We exercise the CLP solver to study the scalability aspects

and resource overhead of policy evaluation. The CLP solver
runs on a single well-provisioned cluster node, which has a
2.3GHz AMD Opteron processor and 16GB of RAM. For
the tests, we generate a number of data sets directly from
the item and item2dev facts describing the media files of
our user’s data collection. For smaller data sets, we use
random subsets of the original fact list, while for larger ones
we randomly duplicate items in the original list, until the
desired data set size is reached. Policies used in these tests
are similar to those shown in Table 2. We do not report the
exact policy set used in each experiment because in terms
of solving time all policies are basically equivalent. Instead,
what matters is the number of equivalence classes derived
from the policy. Graphs report median values and standard
deviation based on 20 repetitions with different data sets.

We compare two algorithms: the brute force algorithm,
which constrains each item’s placement by reasoning item by
item, and the equivalence class (EC) algorithm, which gen-
erates equivalence classes from the policy set, groups items
accordingly, and then solves the placement problem. Fig-
ure 5 compares solving time of the two algorithms for an in-
creasing number of items, when 10 policies (corresponding
to 12 equivalence classes) are specified. The solving time
increases linearly with the number of items, and can handle
quickly even a dataset of 100,000 items. If we consider the
data collection of our representative user in Table 1 whose
size is about 15,000 items, less than 5 seconds are enough to
process the entire collection. Our system can scale to han-
dle very large numbers of data items and equivalence classes
allow the system to roughly double the speed of the solving
process. We see a linear increase for the EC algorithm due
to the overhead of expanding the solution matrix (expressed
in equivalence classes) into an execution plan consisting of
per-item actions. This suggests the performance could be
improved further by producing actions based on equivalence
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classes and delegating the conversion into item identifiers to
the devices responsible for their execution.

If the size of the data set does not represent a scalabil-
ity bottleneck, the other two variables to consider are the
number of devices and number of policies. An increase in
the number of devices brings a linear increase to the solv-
ing time as this corresponds to an increase in the number of
columns in the solving matrix. As the number of devices in
a personal cloud is likely to be small, we keep the overlay
size constant at 7 nodes. Instead, an increase in the number
of policies, hence equivalence classes, can cause an exponen-
tial growth in solving time. When varying the number of
equivalence classes from 4 to 78 (corresponding to 4 and 43
policies) and measuring the solving time for data sets of tens
of thousands of items, we found Anzere still executes reason-
ably fast and with stable behavior. Results are reported in
Figure 6. Note that the observation above about delegat-
ing to overlay nodes the task of converting the solution from
equivalence classes to per-item actions also applies here, and
could reduce the performance gap between the data sets.

These results show how the current implementation is ca-
pable of fully supporting our target scenario of a single user
with a collection of roughly 20,000 data items and 30 poli-
cies. The only constraint that remains to consider is the
resource overhead of the ECLiPSe solver.

Figure 7 depicts the solver’s upper-bound memory con-
sumption, defined as the total heap space and sum of four
different stack peaks (storing Prolog variables, backtrack-
ing information, checkpoints, etc.). The peak value gives
the maximum allocated during the session. For a data set
of 10,000 items, the upper-bound memory usage is within
64 MB, and even with 100,000 items, the upper bound is
still within 300 MB. These are more than acceptable require-
ments for current mainstream personal computers. Recall
that the overlay coordinator and the CLP solver always run
on well-provisioned nodes, not on phones or tablets.

6.2 System resource overhead
Anzere leverages and combines existing techniques for

data replication and couples their execution with resource
management. It is reasonable to ask whether this approach
may be prohibitively expensive.

We measure the message overhead of the system in a stan-
dard scenario where the office PC produces a new photo
every 10 seconds and replicates it across 7 devices in the
overlay. While doing this, we decrease the level of consis-
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 1

 10

 100

 1000

 10  100  1000  10000  100000

S
ta

c
k
 s

iz
e
 (

M
B

)

Number of data items

Memory usage upper bound
Stack peak
Heap used

Figure 7: CLP memory consumption.

tency of such data items, and execute 50 writes with each
setting. A consistency level is specified by the tuple (c,s),
where c is the conit bound (i.e., maximum number of out-
standing writes) and s is the send bound (i.e., maximum
number of outstanding invalidations). The smaller c and s,
the stronger the consistency.

For each new write generated at the office PC node (also
acting as Paxos proposer), if the conit (or send) bound is
exceeded, the node sends all outstanding writes (or invali-
dations) to all other replicas in the overlay. Figure 8 shows
the number of messages sent by the Paxos proposer in each
consistency scenario (on the left), and the bandwidth con-
sumed (on the right). We do not plot the traffic due to body
exchange as the size of bodies is obviously much larger and
application-dependent. For a Paxos acceptor the number of
messages is slightly smaller.

As the consistency guarantees become weaker, the over-
head of Paxos and invalidation messages decreases. In sce-
nario (0,10), for instance, the number of Paxos messages is
roughly twice the number exchanged in (10,10). Likewise,
the number of invalidations decreases from scenario (10,0)
to (10,10). We also observe that the send bound parameter
has an impact on the message overhead as long as it is lower
than the conit bound (i.e., when consensus is invoked, inval-
idations must be exchanged regardless of the send bound).
This is the reason why the first two scenarios are identical.

These experiments do not claim any extraordinary result,
but serve to calibrate our system, and show that Anzere’s
message overhead is largely affordable for a modern personal

cloud. The number of overlay messages for failure detection
and for monitoring network links and devices is constant,
and costs about 2 kbit/s. Interestingly, Paxos also appears
to be reasonably cheap. Even in the scenario (0,0), with
strongest consistency, it costs only 11 kbit/s. Running con-
sensus 730 times a day across a user’s personal ensemble
consumes about 1 MB of data. This makes Paxos affordable
also for less-powerful mobile devices. One round of Paxos
across the 7 devices of our testbed takes about 2 seconds.

6.3 Steady-state tradeoffs
The CLP solver has proven fast and cheap to run. The

next question is how often it should run and which trade-
offs are involved. We consider a scenario in the steady-state
behavior of the system. Every 2 minutes, the Nokia N900
phone generates blocks of 5 photos, 20 seconds apart. Every
20 seconds, the phone (and all other devices) send item2dev
reports to the KB, thus informing it about the new pho-
tos. Photo metadata is fully replicated. Photo bodies are
replicated according to 8 policies (12 ec), including policies
6 and 7 of Table 2 and policy([[private_item]],[repany],

[[fixed_device]]). With this policy and device configura-
tion, the solver’s solution is to copy private photos to the
office PC and public photos to a cloud VM.

Figure 9 shows the impact the solving period has on the
number of vulnerable items in the system. Item vulnerabil-
ity is defined as the number of items not yet replicated to
achieve a stable state – compliant with the policies. Peaks
appear when new items are generated in the system, and
disappear once copy actions have completed. The average
vulnerability decreases as the solver runs more frequently.
As shown, with a solving period of 1 minute the level of
vulnerability reaches 0 once all copy actions are executed,
while with a period of 2 minutes 0 is reached more rarely. In
an implementation in which the CLP solver was invoked in
an event-based manner rather than periodically, the delay
between the first event and the solver’s invocation could be
adjusted for a similar tradeoff in resource overhead versus
data vulnerability.

The rate at which devices report the list of their stored
items (based on which the solver takes actions) is not a limit-
ing factor for these scenarios. In fact, transferring item2dev
reports has such a low overhead that it is possible to set the
reporting period to be very short (e.g., 2 seconds) or sim-
ply let each device report its new items as soon as they are
generated. The limiting factor here is clearly the bandwidth
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Figure 9: Item vulnerability vs. solving interval (Nokia N900 generating a new photo every 20 seconds).
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(b) User mobility
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Figure 10: System reactivity.

of the phone’s WiFi connection: the phone cannot complete
the transfer to the office PC and to the cloud VM before
new items appear.

6.4 Reactivity
Next we show how Anzere can autonomously react and

recover from node failures, user mobility, and policy changes.
In the first test, we pre-populate the system with about

6,500 media files distributed across all personal devices.
Then we permanently crash the home server, storing roughly
1,200 files, thus making the system vulnerable. The remain-
ing personal devices are insufficient to create enough repli-
cas to satisfy the given durability policy. Anzere reasons
about how to recover and reestablish a stable state. As Fig-
ure 10(a) shows, it autonomously acquires a VM from EC2
and creates the missing replicas (roughly 1,200 files, for a
total of 1.5 GB). The files are copied to the EC2 VM partly
from the office PC and partly from the laptop. This process
successfully stabilizes the system and decreases the risk of
data loss to an acceptable level in a fully automated manner.

In the second test, we emulate a case of user mobility. We
assume the laptop initially residing in the office network (in
Europe), leaves it to later reappear in the US. In the US
the laptop initiates a read workload – downloading about
70 recently-created photos from the office PC in Europe, or
roughly 100 MB. This could be the case of a user living in
Europe and traveling to the US for some time. We evaluate
the expected duration of such a read workload, when policy
4 of Table 2 is enabled at runtime.

The policy requires recent photos to be copied close to
the user’s laptop for fast access. When the laptop appears
in the US, the solver reacts by acquiring a local cloud VM
and copying the photos to it. Figure 10(b) shows the access
time (per photo) achieved by the user before and after trav-
eling to the US; for comparison we also show what would
have been achieved by remotely accessing the office PC (in
Europe) from the US. This simple test demonstrates the
power of our policy architecture. CLP allows for almost any
conceivable policy to be specified, and can be used for long-
term data placement, but also for short-term events, such as
downloading bulk data or leaving the home network. The
performance improvements achievable are clear. In our test,
we used a laptop with WiFi connection for simplicity, but
for a mobile phone with limited 3G connectivity, the perfor-
mance gain would be even higher.

Anzere is also designed to deal with changes in policy.
To show this, we use a collection of 1,000 photos (of which
25% are private) and store them on a cloud VM and the
office PC. Policies 6 and 7 of Table 2 are disabled, while
policy([[private_item]],[rep,#>=,2], [[fixed_device]])

and policy([[picture_item]], [repany],[[cloud_device]])

are active. At runtime we change the policy set by enabling
policies 6 and 7 and disabling the last policy. This change
causes the system to delete all private photos from the
cloud, but also replicate the content previously stored on
the cloud to the home server, as the policy set requires
at least two replicas of private items on fixed devices.
The solver generates roughly 500 actions. As Figure 10(c)
shows, photos are deleted from the cloud and at the same
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Figure 11: Optimization cost.

time, the same set of photos is copied to the home server
(from the office PC). The system automatically reacts to
the policy change and reestablishes a stable state.

6.5 Optimization
Finally, we evaluate the cost of supporting policy opti-

mization. As mentioned in Section 4.3, the CLP solver can
optionally include a user-defined objective function and find
the data placement that optimizes this function. Here we
consider the case in which the solver minimizes the band-
width necessary for enforcing the policy set. We found that
the system scales well up to 30 equivalence classes, but after
that the solving time can be over 100 seconds for large data
sets (results in Figure 11). This suggests using optimization
is feasible only with small policy sets, and its overhead is
justified only if the cost metric varies considerably across
the possible solutions. Further work is necessary before op-
timization can be made an integral part of the system. In
the current implementation, the optimization bottleneck is
the ECLiPSe’s branch_and_bound search library, which has
shown to become very slow with more than 100 variables
(corresponding to roughly 32 ec). Modern solvers are ca-
pable of handling a much higher number of variables, in
the order of 1000 variables, and could therefore improve the
search time. Alternatively, the search algorithm could be
replaced by our own customized implementation.

6.6 Summary
Anzere is a complete platform and has been evaluated in

a real personal cloud consisting of phones, laptops, PCs,
and cloud VMs. Anzere is capable of autonomously react-
ing to device failures, policy changes, and user mobility, and
we have shown how it can scale to support our target sce-
narios and the performance gain equivalence classes bring.
The system overhead for overlay and device monitoring, and
for running the constraint solver was also found reasonable.
Yet, our Prolog implementation is completely unoptimized
code. In an optimized implementation, the entire policy cal-
culation could be based on equivalence classes thus making
the system scale better. For instance, the conversion from
equivalence classes to per-item actions could be outsourced
from the Prolog base to the actuating devices. The solver
itself could be replaced by a more powerful one. We chose
ECLiPSe because of its extensive library support and ease
of use, but its performance is not as good as more recent
solvers. In Kotthoff’s comparative study [15] with three
other constraint solvers, ECLiPSe is largely outperformed

by Gecode [8] and Minion [9]. Microsoft Solver Founda-
tion [19] is promising too, supporting programming prob-
lems with more than 1000 variables and constraints.

7. CONCLUSION
In this paper, we explore the features that a storage

system for personal clouds needs to support, and describe
the Anzere prototype that incorporates them. Anzere is
novel in several aspects. It supports device-neutral poli-
cies, and is thus capable of operating with a changing set
of devices. It shows an alternative way to use cloud in-
frastructure, where cloud VMs are seen as acquirable re-
sources about which the system can reason, and acquire
on-the-fly. Anzere not only offers greater policy expressiv-
ity, but also a tractable approach, scaling to many data
items. Anzere is a novel yet practical system: we have
shown it in action in trials across phones, laptops, desk-
top PCs, EC2 and PlanetLab. Its source code is available
at http://www.systems.ethz.ch/research/projects/anzere.

We have so far considered a single-user model. To han-
dle a multi-user scenario, the system can include attributes
like ownership, level of trust and owner’s relationships in the
device representation, without any need to change the rea-
soning framework. Ultimately, the device space might make
use of equivalence classes as well. With the framework in
place, extending Anzere to deal with other content type is
mostly straightforward. In this paper, we have evaluated
Anzere mainly with immutable data, but the replication in-
frastructure already supports mutable content such as con-
tact information, calendar entries, or text files.
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