
Towards realistic benchmarks for virtual infrastructure resource
allocators

Qin Yin, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zürich

Abstract

The rise of virtual infrastructures has renewed re-
search interest in the design and implementation of
resource allocators which allow users to reserve or
use combinations of (virtual) nodes, switches, and
network links on a variety of virtual infrastructures
ranging from network testbeds to cloud comput-
ing facilities. However, since the area is still rel-
atively new, work on resource allocation lacks re-
alistic benchmarks. In this paper, we suggest how
to generate realistic benchmarks for virtual infras-
tructure, and present our workload generator as an
example, which is based on a 5-year trace of experi-
ments submitted to the popular Emulab testbed. We
demonstrate the importance as well as potential ap-
plications of such benchmarks by using the gener-
ated test workload in various evaluation scenarios.

1 Introduction

In Infrastructure-as-a-Service (IaaS) systems and
networking testbeds, resource requests composed
of virtual machines, virtual routers and virtual links
are allocated from an underlying shared physical
infrastructure. A significant challenge is how to
map a virtual network (VN) topology with resource
constraints to specific nodes and links in a given
shared physical network (PN) infrastructure so as
to accurately emulate the network properties re-

quested by users. This may involve virtual net-
work embedding, resource constraint satisfaction,
and even concepts from operations research such as
yield maximization, in mapping multiple requests
for resources to a given physical infrastructure.

The problem has inspired research in a number
of related areas, one example being the design of
efficient network mapping algorithms. Another is
the design and implementation of resource alloca-
tors: how users can specify their resource require-
ments, how resource providers can satisfy many
users while optimizing utilization, revenue, power
consumption, or some other metric of interest.

To evaluate and compare resource allocators, the
research community requires benchmarks to infer
system resource allocation behavior, to identify the
impact of design choices, and to compare differ-
ent resource allocation strategies. However, to date
there is no clear consensus on what constitutes a
realistic workload for such systems, let alone on a
common benchmark for comparing ideas.

Existing work uses mostly simulators to generate
virtual network requests and substrate network for
evaluation. However, randomly generated graphs
can not faithfully represent real requests and phys-
ical infrastructure. Such synthetic workloads may
even miss key aspects in reality that significantly
impact system design. Benchmarks based on real
trace are less susceptible to this.

We argue that the accuracy of system evaluation
results depends on the accuracy and realism of the
benchmarks used, and realistic benchmarks should
be constructed from real-world workload traces. Of
course, this is not a new position. Our contributions
for virtual infrastructure resource allocators are as
follows:

• A reference model which defines the design

1



space of resource allocators;

• A general methodology for generating re-
alistic benchmarks, and an example work-
load generator based on a 5-year trace of ex-
periments submitted to the popular Emulab
testbed [12];

• Results from using the generated test work-
loads in three evaluation scenarios.

2 Virtual infrastructure resource
allcoation

Figure 1 depicts a general reference model for re-
source allocators which includes two stages: re-
source reservation and resource allocation. The
user submits the resource request specifying the de-
sired elements in the virtual network, constraints on
and dependencies between these elements, and the
period of time for which the requested resources
are desired. If satisfiable, the provider will return a
ticket as a reservation of a set of resources.

Given a ticket, a user may redeem it for a lease
before its expiry time (some time before the spec-
ified StartTime). This redemption confirms the al-
location of concrete resource components (activa-
tion), and allows access to these resources.

Almost all resource allocation systems are a
(non-strict) subset of this model – for example,
some choose to conflate leases and tickets. We sur-
vey the three main application areas below.

2.1 Testbeds

Early network testbeds such as PlanetLab [23] pro-
vide only best-effort VMs to users, but the de-
sign is general enough to support brokerage ser-
vices on top: Sirius [25] allows users to reserve
VMs system-wide for an hour at a time. Alterna-
tive market-based services like SHARP [14] allow
trading of resources.

The Emulab [11] network emulator does not sup-
port advance reservation but performs guaranteed-
share scheduling. Emulab users may request a set
of nodes for experiments, and to specify how they
are configured to emulate network topologies. Em-
ulab uses a network mapping algorithm called

assign which uses simulated annealing to find a
near-optimal solution in bounded solving time.

The GENI [16] program aims at both high best-
effort utilization and admission-control for guar-
antees to some clients. It includes several control
frameworks: VINI [30] is a PlanetLab-like testbed
where users can configure virtual topologies. Pro-
toGENI [24] is based on Emulab software, but
with a different subset of the model in Figure 1
using tickets. ORCA/BEN [22] is control plane
(ORCA), which differentiates tickets from leases,
for a metro-scale optical testbed (BEN).

2.2 Grid and cloud systems

Grid systems differ from infrastructures like GENI.
Firstly, they focus purely on nodes rather than net-
works. The Globus toolkit [17] distributes large sci-
entific applications across a set of computational
resources, and Condor [9] allocates machines to
parallel jobs based on a match-making mechanism
called ClassAds. Secondly, resource allocation typ-
ically uses a batch scheduling job queue: when a
job reaches the front of the queue, it gets dedicated
access to resources for its run.

Public clouds like Amazon EC2 [10] have many
machines, but advertise a small number of VM
classes, based on location and approximate com-
puting power. They differ from testbeds in three
ways. Firstly, machines are allocated piecemeal
and access is granted at time of request – there is
no notion of (nor need for) resource reservations.
Secondly, in cloud backends, the use of admis-
sion control and capacity planning ensure that jobs
have enough resource to run with little wait time,
something hard to achieve in network testbeds. Fi-
nally, until recently allocating shares of the inter-
connect between nodes was not a feature offered
by providers.

Private/hybrid cloud systems like Eucalyp-
tus [13] take the middle ground between public
cloud systems and testbeds. They encourage third-
party development of the scheduler module. The
Haizea [28] lease manager for OpenNebula can al-
locate VM resources under a variety of terms, in-
cluding reservations and best-effort queueing.

In this paper, we focus on realistic benchmarks
for testbeds. However, the general methodology

2



Submit 
request

Ticket
issued

Grant 
Lease

Release
Lease

Redeem
Ticket

Surrender 
Ticket

Surrender 
Lease

Ticket 
expiry time

Lease 
activated

DurationStart timeLead time Failure

Figure 1: Timeline of a resource request

presented below is also applicable to grid and cloud
systems.

3 Benchmark methodology

Benchmarking consists of running a system to eval-
uate its performance with respect to some pre-
defined benchmark metrics, typically by execut-
ing a number of standard well-designed bench-
mark workloads against it. The generation of the
benchmark workloads to be used to test both the
current available system and new emerging sys-
tem requires an accurate workload characterization
model. Calzarossa et.al. present a through survey
of workload characterization [4] and analyze the
issues and methodologies [3]. Workload charac-
terization and benchmarking is considered of key
importance in many application areas: I/O sys-
tems [6], database management systems [29], In-
ternet web servers [1, 2], etc.

The design of benchmarks for Grid technology
has provided a useful input to our work. Chapin
et.al. explore creating benchmarks to evaluate par-
allel job schedulers [5]. Others have proposed a
comprehensive model for supercomputer [8] and
parallel computers[27] workloads. Recently, Gana-
pathi et.al. have proposed statistics-driven work-
load modeling for the cloud [15], and several
groups have analyzed a Google compute cluster
trace [21, 7]. Workload characterization results are
used to predict workload patterns [19] and to syn-
thesize realistic workloads [31].

Virtual infrastructures are still relatively new,
particularly those which are distributed in nature
and permit complex topological requests, and it is
not yet clear what a representative workload for a
resource allocator is. Based on a through survey

of related work in other fields, we summarize the
steps to realistic workload generation: 1) choosing
the parameter set which can describe workload be-
havior; 2) using monitoring tools to collect system
workload trace; 3) analyzing the collected trace, ap-
plying statistic methods to characterize it and con-
struct workload models; 4) using the constructed
model to generate realistic workloads.

In this section, we describe a general approach
to generate realistic benchmarks and use our work-
load generator as an example. Our workload gener-
ator is based on a trace of Emulab experiments for
the 5 years prior to June 2007, essentially cover-
ing every experiment submitted to Emulab before
that date. While we make no authoritative claims
that this is representative (indeed, the information
in the trace is limited and Emulab is unlikely to be
representative of other virtual infrastructures), we
argue that it is at least based on plausible data and
assumptions.

3.1 Parameter selection

The choice of the parameter set to thoroughly de-
scribe workload behavior, depends critically on the
type of the system. For virtual infrastructure re-
source allocation reference model, we use the fol-
lowing parameters to characterize VN requests:

• VN request topology with constraints on the
requested resources;

• VN request submission time;
• Lead time between request submission and

lease activation;
• Duration for which resources are used;
• Probability that a ticket is canceled before it

expires;
• Probability that a ticket expires;

3



• Probability that a lease is surrendered before
its specified duration.

3.2 Trace collection

The collection of the trace used to generate real-
istic benchmarks should ideally use measurment
or monitoring tools to collect data, possibly merge
information from different sources, ensure a long
enough time span, cover details of all the selected
parameters, and retain anonymity to ensure users’
privacy.

For the resource allocation reference model, its
trace should include at least the following in-
formation for each request: requested constrained
topology, desired duration, timestamps for resource
reservation, lease activation and cancellation, as
well as all the possible events of ticket surrender,
ticket expiry, lease surrender, etc.

Emulab follows only a subset of the reference
model, and does not support resource reservation.
Emulab logs cover many details of its system ex-
ecution, however, due to anonymity reasons, the
published Emulab trace is limited. Nevertheless, it
is a valuable source of information: the trace covers
23818 anonymized experiments, consists of 23GB
of .top and .ptop files. A .top file describes a
virtual topology requested by an Emulab user, and
a .ptop file describes the physical network topol-
ogy that was available at the time the system tried
to swap in the experiment.

3.3 Workload characterization

Since the behavior of a real workload is complex
and difficult to reproduce, a compact, repeatable
and accurate model is needed. Such a model has
to capture the statistical characteristics of the real
load. More specifically, for the resource alloca-
tion reference model, given a complete and de-
tailed workload trace, a generative workload model
should be able to describe the frequency distri-
bution of VN requests, the request inter-arrival
time distribution, lead time and duration distribu-
tion, probabilities of ticket expiration and early
ticket/lease surrenders. A more realistic workload
model should also capture the relationship among

these parameters. These statistical models can later
be used to generate realistic workloads.

Jelena et.al.’s comparative study of network
testbed usage characteristics [20] shows that dis-
tributions of features such as VN request durations
and VN sizes are heavy-tailed: they span a wide
range of values with most points clustered at small
values, and with few points residing in the long
tail. This conclusion also holds true for the Emu-
lab trace we use [33]. In Section 3.4 we describe
the assumptions we make about the distributions of
parameters missing from the trace but important for
workload generation.

With a generative workload model, we can gen-
erate request workloads by sampling these distribu-
tions.

3.4 Our workload generator

The Emulab trace includes virtual topology re-
quests which contain information of several dimen-
sions: requested VN size, topology, node and link
constraints, etc. In our Emulab trace-base workload
generator, we applied a simple method: extracting
a request sequence from the available trace by sam-
pling from the complete 5-year request set.

Request arrivals are modelled as Poisson pro-
cesses with various rate values λ. The Poisson
distribution expresses the probability of a given
number of events occurring in a fixed interval of
time. We vary arrival rate parameter λ to increase
or decrease offered load. As a reference, Emu-
lab received 4 requests per hour on average. We
model lead time and duration as Gamma distribu-
tions. The Gamma distribution has long been used
for modeling demand distribution in queueing sys-
tems [26, 18]. It has two parameters: shape(k) and
scale(θ).

Depending on different evaluation scenarios, our
workload generator can synthesize workloads with
various parameters. For the experiments present in
Section 4, we make some further assumptions to
simplify the problem: first, ticket expiry probability
is 0, meaning that all the tickets are redeemed be-
fore they are expired; second, early ticket surrender
probability is 0; third, early lease surrender proba-
bility is 0, meaning that leases are always released
after duration time period.

4



Based on these distribution models, we annotate
the Emulab request stream with different time pa-
rameters – when to request resources, when to al-
locate resources and when to release them – and
generate our workload from this.

4 Benchmark applications

We briefly show three evaluation scenarios where
the generated request workloads are applied. In
these evaluations, the physical infrastructure is
based on the biggest ProtoGENI site, with 627
nodes (switches and hosts) and 1163 links.

Comparing VN mapping algorithms: By gen-
erating various topology requests, we can compare
different VN mapping algorithms with respect to
the solving time, scalability, revenue-to-cost ratio,
etc. by mapping a set of VN requests to the same
physical network or by exhausting the physical net-
work. The test workload for this experiment has no
temporal attributes, and can be sampled from the
set of all Emulab virtual network requests. In [33],
we use the generated workload to compare differ-
ent variants of VF2x algorithm, which is an effi-
cient network mapping algorithm based on the VF2
subgraph isomorphism algorithm.

Investigating dynamic allocation behavior:
We can generate sequences of resource requests
and releases requests to the resource allocator to
investigate its dynamic behavior under continuous
requests with respect to resource utilization, num-
ber and percentage of successful mappings. In this
scenario, the allocator does not support reservation
and immediately assigns resources to the request
for duration time. In this experiment, we set dura-
tion Gamma distribution parameters shape = 0.3
and scale = 20, and vary λ from 4 to 8 and 16
to increase offered load. We use these distributions
to annotate the Emulab stream with two parame-
ters: when to request resources and when to release
them. Figure 2 shows the physical utilization un-
der different loads. Not surprisingly, we see that
the higher the load, the more likely it is that the al-
locator can fit small requests into the network and
achieve higher utilization.

Evaluating allocation strategies: We previ-
ously proposed negotiating for resources using late-

binding and constraints [32]. Having users specify
requests as constraints, and providers reply with
commitments also expressed as constraints, gives
providers flexibility in late-binding of resources
and more potential to optimize metrics like utiliza-
tion.

The evaluation in [32] used simplistic synthe-
sized data, but Figure 3 revisits the experiment
using the more realistic workload generated from
the Emulab trace. The parameters for the workload
generator are λ = 16, lead time gamma distribution
shape = 0.8 and scale = 20, duration gamma dis-
tribution shape = 0.3 and scale = 20.

We compare a greedy allocation with a simple
late-binding strategy whereby when a ticket re-
quest can not be satisfied respecting all prior ticket
assignments, the provider picks the unredeemed
ticket with the largest overlapping request and re-
solves both requests together. Figure 3 shows the
period between 75 and 100 minutes of a 3-hour ex-
periment, and shows that even this simple strategy
can increase utilization most of the time.

5 Discussion

We have presented only the first steps towards a
standardized benchmark suite for virtual infrastruc-
ture resource allocators, but we argue that such a
goal is an important one for the research commu-
nity to make progress in this field. While the Em-
ulab trace we use has only limited information, it
does provide a first cut at creating workloads to test
a variety of properties of allocators in a range of
different scenarios.

Acknowledgements

We would like to thank Robert Ricci and Fabien
Hermenier for sharing the Emulab trace, Jelena
Mirkovic for early access to her comparative study
of network testbed usage, John Wilkes for many in-
sightful discussions, and the anonymous reviewers
for their feedback.

5



0 50 100 150 200 250
Time (mins)

0

20

40

60

80

100

U
til

iz
at

io
n

(%
)

λ = 4

λ = 8

λ = 16

Figure 2: Executing the generated trace of arrival rate λ = 4,8,16

80 85 90 95 100
Time (mins)

60

65

70

75

80

85

90

95

100

U
til

iz
at

io
n

(%
)

Without late-binding
With late-binding

Figure 3: Highlight of the full timeline

References

[1] ARLITT, M. F., AND WILLIAMSON, C. L. Internet web
servers: Workload characterization and performance implica-
tions. IEEE/ACM Transactions on Networking 5 (1997), 631–
645.

[2] BARFORD, P., AND CROVELLA, M. Generating representative
web workloads for network and server performance evaluation.
SIGMETRICS Perform. Eval. Rev. 26, 1 (June 1998), 151–160.

[3] CALZAROSSA, M., MASSARI, L., AND TESSERA, D. Work-
load characterization issues and methodologies. In Proc. of Per-
formance Evaluation: Origins and Directions (2000), pp. 459–
481.

[4] CALZAROSSA, M., AND SERAZZI, G. Workload characteriza-
tion: A survey. In Proc. of the IEEE (1993), pp. 1136–1150.

[5] CHAPIN, S. J., CIRNE, W., FEITELSON, D. G., JONES, J. P.,
LEUTENEGGER, S. T., SCHWIEGELSHOHN, U., SMITH, W.,
AND TALBY, D. Benchmarks and standards for the evaluation
of parallel job schedulers. In Proc. of JSSPP’99, pp. 67–90.

[6] CHEN, P. M., AND PATTERSON, D. A. A new approach to I/O
performance evaluation: self-scaling I/O benchmarks, predicted
I/O performance. ACM Trans. Comput. Syst. (1994), 308–339.

[7] CHEN, Y., GANAPATHI, A. S., GRIFFITH, R., AND KATZ,
R. H. Analysis and lessons from a publicly available google
cluster trace. Tech. Rep. UCB/EECS-2010-95, EECS Depart-
ment, University of California, Berkeley, Jun 2010.

[8] CIRNE, W., AND BERMAN, F. A comprehensive model of the
supercomputer workload. In Proc. of WWC’01, pp. 140–148.

[9] Condor. http://www.cs.wisc.edu/condor/.
[10] Amazon EC2. http://aws.amazon.com/ec2/.
[11] Emulab. http://www.emulab.net/.
[12] Emulab trace. http://www.emulab.net/downloads/

topfiles/topfiles-anonymized-2007-06-18.tar.gz.
[13] Eucalyputus Cloud. http://www.eucalyptus.com/.
[14] FU, Y., CHASE, J., CHUN, B., SCHWAB, S., AND VAHDAT, A.

SHARP: an architecture for secure resource peering. In Proc. of
SOSP’03, pp. 133–148.

[15] GANAPATHI, A. S., CHEN, Y., FOX, A., KATZ, R. H., AND
PATTERSON, D. A. Statistics-driven workload modeling for the
cloud. Tech. Rep. UCB/EECS-2009-160, EECS Department,

University of California, Berkeley, Nov 2009.
[16] GENI. http://www.geni.net/.
[17] Globus. http://www.globus.org.
[18] JAIN, R. K. The Art of Computer Systems Performance Anal-

ysis: Techniques for Experimental Design, Measurement, Simu-
lation, and Modeling. Wiley, New York, NY, USA, April 1991.

[19] KHAN, A., YAN, X., TAO, S., AND ANEROUSIS, N. Workload
characterization and prediction in the cloud: A multiple time se-
ries approach. In Proc. of Cloudman’12.

[20] MIRKOVIC, J., HUSSAIN, A., AND SHI, H. A comparative
study of network testbed usage characteristics. Under submis-
sion, USC/Information Sciences Institute, 2012.

[21] MISHRA, A. K., HELLERSTEIN, J. L., CIRNE, W., AND DAS,
C. R. Towards characterizing cloud backend workloads: in-
sights from google compute clusters. SIGMETRICS Perform.
Eval. Rev. 37, 4 (Mar. 2010), 34–41.

[22] ORCA/BEN: A prototype GENI control plane for a metro-scale
optical testbed. https://geni-orca.renci.org/trac/.

[23] PlanetLab. http://www.planet-lab.org/.
[24] ProtoGENI. http://www.protogeni.net/trac/protogeni.
[25] Sirius calendar service. http://www.planet-lab.org/node/

114.
[26] SMITH, J., GOLDEN, P., AND APPLETON, B. Airline: a strate-

gic management simulation. Prentice Hall, 1991.
[27] SONG, B., ERNEMANN, C., AND YAHYAPOUR, R. Parallel

computer workload modeling with markov chains. In Proc. of
JSSPP’04, pp. 47–62.

[28] SOTOMAYOR, B., KEAHEY, K., AND FOSTER, I. Combining
batch execution and leasing using virtual machines. In Proc. of
HPDC’08, pp. 87–96.

[29] TPC - Transaction Processing Performance Council. http://
www.tpc.org/.

[30] VINI. http://www.vini-veritas.net/.
[31] WANG, G., BUTT, A. R., MONTI, H., AND GUPTA, K. To-

wards synthesizing realistic workload traces for studying the
hadoop ecosystem. In Proc. of MASCOTS’11, pp. 400–408.

[32] YIN, Q., AND ROSCOE, T. A better way to negotiate for testbed
resources. In Proc. of APSys’11, pp. 19:1–19:5.

[33] YIN, Q., AND ROSCOE, T. Vf2x: Fast, efficient virtual network
mapping for real testbed workloads. In Proc. of TridentCom’12.

6


