
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Decoupling Cores, Kernels, and Operating Systems
Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe, ETH Zürich

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zellweger

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 17

Decoupling Cores, Kernels, and Operating Systems

Gerd Zellweger, Simon Gerber, Kornilios Kourtis, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zurich

Abstract
We present Barrelfish/DC, an extension to the Bar-

relfish OS which decouples physical cores from a native
OS kernel, and furthermore the kernel itself from the rest
of the OS and application state. In Barrelfish/DC, native
kernel code on any core can be quickly replaced, kernel
state moved between cores, and cores added and removed
from the system transparently to applications and OS
processes, which continue to execute.

Barrelfish/DC is a multikernel with two novel ideas: the
use of boot drivers to abstract cores as regular devices, and
a partitioned capability system for memory management
which externalizes core-local kernel state.

We show by performance measurements of real appli-
cations and device drivers that the approach is practical
enough to be used for a number of purposes, such as
online kernel upgrades, and temporarily delivering hard
real-time performance by executing a process under a
specialized, single-application kernel.

1 Introduction

The hardware landscape is increasingly dynamic. Future
machines will contain large numbers of heterogeneous
cores which will be powered on and off individually in
response to workload changes. Cores themselves will
have porous boundaries: some may be dynamically fused
or split to provide more energy-efficient computation. Ex-
isting OS designs like Linux and Windows assume a static
number of homogeneous cores, with recent extensions to
allow core hotplugging.

We present Barrelfish/DC, an OS design based on the
principle that all cores are fully dynamic. Barrelfish/DC
is based on the Barrelfish research OS [5] and exploits
the “multikernel” architecture to separate the OS state
for each core. We show that Barrelfish/DC can handle
dynamic cores more flexibly and with far less overhead
than Linux, and also that the approach brings additional
benefits in functionality.

A key challenge with dynamic cores is safely dispos-
ing of per-core OS state when removing a core from the
system: this process takes time and can dominate the hard-
ware latency of powering the core down, reducing any
benefit in energy consumption. Barrelfish/DC addresses
this challenge by externalizing all the per-core OS and
application state of a system into objects called OSnodes,
which can be executed lazily on another core. While
this general idea has been proposed before (notably, it is
used in Chameleon [37] to clean up interrupt state), Bar-
relfish/DC takes the concept much further in completely
decoupling the OSnode from the kernel, and this in turn
from the physical core.

While transparent to applications, this new design
choice implies additional benefits not seen in prior sys-
tems: Barrelfish/DC can completely replace the OS kernel
code running on any single core or subset of cores in the
system at runtime, without disruption to any other OS
or application code, including that running on the core.
Kernels can be upgraded or bugs fixed without downtime,
or replaced temporarily, for example to enable detailed
instrumentation, to change a scheduling algorithm, or to
provide a different kind of service such as performance-
isolated, hard real-time processing for a bounded period.

Furthermore, per-core OS state can be moved between
slow, low-power cores and fast, energy-hungry cores.
Multiple cores’ state can be temporarily aggregated onto a
single core to further trade-off performance and power, or
to dedicate an entire package to running a single job for a
limited period. Parts of Barrelfish/DC can be moved onto
and off cores optimized for particular workloads. Cores
can be fused [26] transparently, and SMT threads [29, 34]
or cores sharing functional units [12] can be selectively
used for application threads or OS accelerators.

Barrelfish/DC relies on several innovations which form
the main contributions of this paper. Barrelfish/DC treats
a CPU core as being a special case of a peripheral device,
and introduces the concept of a boot driver, which can
start, stop, and restart a core while running elsewhere. We

1

18 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

use a partitioned capability system for memory manage-
ment which allows us to completely externalize all OS
state for a core. This in turn permits a kernel to be essen-
tially stateless, and easily replaced while Barrelfish/DC
continues to run. We factor the OS into per-core ker-
nels1 and OSnodes, and a Kernel Control Block provides
a kernel-readable handle on the total state of an OSnode.

In the next section, we lay out the recent trends in
hardware design and software requirements that motivate
the ideas in Barrelfish/DC. Following this, in Section 3
we discuss in more detail the background to our work,
and related systems and techniques. In Section 4 we
present the design of Barrelfish/DC, in particular the key
ideas mentioned above. In Section 5 we show by means
of microbenchmarks and real applications (a web server
and the PostgreSQL database) that the new functionality
of Barrelfish/DC incurs negligible overhead, as well as
demonstrating how Barrelfish/DC can provide worst-case
execution time guarantees for applications by temporarily
isolating cores. Finally, we discuss Barrelfish/DC lim-
itations and future work in Section 6, and conclude in
Section 7.

2 Motivation and Background

Barrelfish/DC fully decouples cores from kernels (super-
visory programs running in kernel mode), and moreover
both of them from the per-core state of the OS as a whole
and its associated applications (threads, address spaces,
communication channels, etc.). This goes considerably
beyond the core hotplug or dynamic core support in to-
day’s OSes. Figure 1 shows the range of primitive kernel
operations that Barrelfish/DC supports transparently to ap-
plications and without downtime as the system executes:

• A kernel on a core can be rebooted or replaced.
• The per-core OS state can be moved between cores.
• Multiple per-core OS components can be relocated

to temporarily “share” a core.

In this section we argue why such functionality will
become important in the future, based on recent trends in
hardware and software.

2.1 Hardware
It is by now commonplace to remark that core counts,
both on a single chip and in a complete system, are in-
creasing, with a corresponding increase in the complexity
of the memory system – non-uniform memory access and
multiple levels of cache sharing. Systems software, and

1Barrelfish uses the term CPU driver to refer to the kernel-mode
code running on a core. In this paper, we use the term “kernel” instead,
to avoid confusion with boot driver.

in particular the OS, must tackle the complex problem of
scheduling both OS tasks and those of applications across
a number of processors based on memory locality.

At the same time, cores themselves are becoming non-
uniform: Asymmetric multicore processors (AMP) [31]
mix cores of different microarchitectures (and therefore
performance and energy characteristics) on a single pro-
cessor. A key motivation for this is power reduction for
embedded systems like smartphones: under high CPU
load, complex, high-performance cores can complete
tasks more quickly, resulting in power reduction in other
areas of the system. Under light CPU load, however, it is
more efficient to run tasks on simple, low-power cores.

While migration between cores can be transparent to
the OS (as is possible with, e.g., ARM’s “big.LITTLE”
AMP architecture) a better solution is for the OS to man-
age a heterogeneous collection of cores itself, powering
individual cores on and off reactively.

Alternatively, Intel’s Turbo Boost feature, which in-
creases the frequency and voltage of a core when others
on the same die are sufficiently idle to keep the chip
within its thermal envelope, is arguably a dynamic form
of AMP [15].

At the same time, hotplug of processors, once the
province of specialized machines like the Tandem Non-
Stop systems [6], is becoming more mainstream. More
radical proposals for reconfiguring physical processors
include Core Fusion [26], whereby multiple independent
cores can be morphed into a larger CPU, pooling caches
and functional units to improve the performance of se-
quential programs.

Ultimately, the age of “dark silicon” [21] may well
lead to increased core counts, but with a hard limit on the
number that may be powered on at any given time. Per-
formance advances and energy savings subsequently will
have to derive from specialized hardware for particular
workloads or operations [47].

The implications for a future OS are that it must man-
age a dynamic set of physical cores, and be able to adjust
to changes in the number, configuration, and microarchi-
tecture of cores available at runtime, while maintaining a
stable execution environment for applications.

2.2 Software
Alongside hardware trends, there is increasing interest in
modifying, upgrading, patching, or replacing OS kernels
at runtime. Baumann et al. [9] implement dynamic ker-
nel updates in K42, leveraging the object-oriented design
of the OS, and later extend this to interface changes us-
ing object adapters and lazy update [7]. More recently,
Ksplice [3] allows binary patching of Linux kernels with-
out reboot, and works by comparing generated object code
and replacing entire functions. Dynamic instrumentation

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 19

core 1

OSnode α

core 2

kernel B1kernel A

core 0

kernel B2

k. B3

core 1

kernel B2

Time
update move park unpark

k. C

OSnode β

multiplexer

Figure 1: Shows the supported operations of a decoupled OS. Update: The entire kernel, dispatching OSnode α , is replaced
at runtime. Move: OSnode α containing all per-core state, entailing applications is migrated to another core and kernel. Park:
OSnode α is moved to a new core and kernel that temporarily dispatches two OSnodes. Unpark: OSnode α is transferred back to
its previous core.

systems like Dtrace [13] provide mechanisms that modify
the kernel at run-time to analyze program behavior.

All these systems show that the key challenges in up-
dating an OS online are to maintain critical invariants
across the update and to do so with minimal interruption
of service (the system should pause, if at all, for a mini-
mal period). This is particularly hard in a multiprocessor
kernel with shared state.

In this paper, we argue for addressing all these chal-
lenges in a single framework for core and kernel man-
agement in the OS, although the structure of Unix-like
operating systems presents a barrier to such a unified
framework. The rest of this paper describes the unified
approach we adopted in Barrelfish/DC.

3 Related work

Our work combines several directions in OS design and
implementation: core hotplugging, kernel update and
replacement, and multikernel architectures.

3.1 CPU Hotplug
Most modern OS designs today support some form of core
hotplug. Since the overriding motivation is reliability, un-
plugging or plugging a core is considered a rare event
and the OS optimizes the common case where the cores
are not being hotplugged. For example, Linux CPU hot-
plug uses the __stop_machine() kernel call, which halts
application execution on all online CPUs for typically

hundreds of milliseconds [23], overhead that increases
further when the system is under CPU load [25]. We show
further evidence of this cost in Section 5.1 where we com-
pare Linux’ CPU hotplug with Barrelfish/DC’ core update
operations.

Recognizing that processors will be configured much
more frequently in the future for reasons of energy usage
and performance optimization, Chameleon [37] identifies
several bottlenecks in the existing Linux implementation
due to global locks, and argues that current OSes are ill
equipped for processor sets that can be reconfigured at
runtime. Chameleon extends Linux to provide support for
changing the set of processors efficiently at runtime, and
a scheduling framework for exploiting this new function-
ality. Chameleon can perform processor reconfiguration
up to 100,000 times faster than Linux 2.6.

Barrelfish/DC is inspired in part by this work, but
adopts a very different approach. Where Chameleon tar-
gets a single, monolithic shared kernel, Barrelfish/DC
adopts a multikernel model and uses the ability to reboot
individual kernels one by one to support CPU reconfigu-
ration.

The abstractions provided are accordingly different:
Chameleon abstracts hardware processors behind proces-
sor proxies and execution objects, in part to handle the
problem of per-core state (primarily interrupt handlers)
on an offline or de-configured processor. In contrast, Bar-
relfish/DC abstracts the per-core state (typically much
larger in a shared-nothing multikernel than in a shared-
memory monolithic kernel) behind OSnode and kernel
control block abstractions.

3

20 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

In a very different approach, Kozuch et al. [30] show
how commodity OS hibernation and hotplug facilities can
be used to migrate a complete OS between different ma-
chines (with different hardware configurations) without
virtualization.

Hypervisors are typically capable of simulating hot-
plugging of CPUs within a virtual machine. Barrelfish/DC
can be deployed as a guest OS to manage a variable set
of virtual CPUs allocated by the hypervisor. Indeed, Bar-
relfish/DC addresses a long-standing issue in virtualiza-
tion: it is hard to fully virtualize the microarchitecture of a
processor when VMs might migrate between asymmetric
cores or between physical machines with different proces-
sors. As a guest, Barrelfish/DC can natively handle such
heterogeneity and change without disrupting operation.

3.2 Kernel updates

The problem of patching system software without down-
time of critical services has been a research area for some
time. For example, K42 explored update of a running ker-
nel [7, 9], exploiting the system’s heavily object-oriented
design. Most modern mainstream OSes support dynamic
loading and unloading of kernel modules, which can be
used to update or specialize limited parts of the OS.

KSplice [3] patches running Linux kernels without
the need for reboot by replacing code in the kernel at
a granularity of complete functions. It uses the Linux
stop_machine() call to ensure that no CPU is currently
executing a function to be replaced, and places a branch
instruction at the start of the obsolete function to direct
execution of the replacement code. Systems like KSplice
replace individual functions across all cores at the same
time. In contrast, Barrelfish/DC replaces entire kernels,
but on a subset of cores at a time. KSplice makes sense for
an OS where all cores must execute in the same, shared-
memory kernel and the overhead incurred by quiescing
the entire machine is unavoidable.

Proteos [22] uses a similar approach to Barrelfish/DC
by replacing applications in their entirety instead of apply-
ing patches to existing code. In contrast to Ksplice, Pro-
teos automatically applies state updates while preserving
pointer integrity in many cases, which eases the burden on
programmers to write complicated state transformation
functions. In contrast to Barrelfish/DC, Proteos does not
upgrade kernel-mode code but focuses on updates for OS
processes running in user-space, in a micro-kernel envi-
ronment. Much of the OS functionality in Barrelfish/DC
resides in user-space as well, and Proteos would be appli-
cable here.

Otherworld [18] also enables kernel updates without
disrupting applications, with a focus on recovering system
crashes. Otherworld can microreboot the system kernel
after a critical error without clobbering running applica-

tions’ state, and then attempt to restore applications that
were running at the time of a crash by recreating applica-
tion memory spaces, open files and other resources.

Rather than relying on a single, system-wide kernel,
Barrelfish/DC exploits the multikernel environment to of-
fer both greater flexibility and better performance: kernels
and cores can be updated dynamically with (as we show
in Section 5) negligible disruption to the rest of the OS.

While their goals of security and availability dif-
fer somewhat from Barrelfish/DC, KeyKOS [24] and
EROS [42] use partitioned capabilities to provide an es-
sentially stateless kernel. Memory in KeyKOS is per-
sistent, and it allows updates of the OS while running,
achieving continuity by restoring from disk-based check-
points of the entire capability state. Barrelfish/DC by
contrast achieves continuity by distributing the capability
system, only restarting some of the kernels at a time, and
preserving each kernel’s portion of the capability system
across the restart.

3.3 Multikernels

Multikernels such as fos [48], Akaros [40], Tessella-
tion [33], Hive [14], and Barrelfish [8], are based on
the observation that modern hardware is a networked
system and so it is advantageous to model the OS as a
distributed system. For example, Barrelfish runs a small
kernel on each core in the system, and the OS is built as
a set of cooperating processes, each running on one of
these kernels, sharing no memory, and communicating via
message passing. Multikernels are motivated by both the
scalability advantages of sharing no cache lines between
cores, and the goal of supporting future hardware with
heterogeneous processors and little or no cache-coherent
or shared physical memory.

Barrelfish/DC exploits the multikernel design for a new
reason: dynamic and flexible management of the cores
and the kernels of the system. A multikernel can naturally
run different versions of kernels on different cores. These
versions can be tailored to the hardware, or specialized
for different workloads.

Furthermore, since (unlike in monolithic kernels) the
state on each core is relatively decoupled from the rest
of the system, multikernels are a good match for systems
where cores come and go, and intuitively should support
reconfiguration of part of the hardware without undue
disruption to software running elsewhere on the machine.
Finally, the shared-nothing multikernel architecture al-
lows us to wrap kernel state and move it between different
kernels without worrying about potentially harmful con-
current accesses.

We chose to base Barrelfish/DC on Barrelfish, as it is
readily available, is under active development, supports
multiple hardware platforms, and can run a variety of

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 21

common applications such as databases and web servers.
The features of Barrelfish/DC described in this paper will
be incorporated into a future Barrelfish release.

Recently, multikernels have been combined with tra-
ditional OS designs such as Linux [27, 36] so as to run
multiple Linux kernels on different cores of the same ma-
chine using different partitions of physical memory, in
order to provide performance isolation between applica-
tions. Popcorn Linux [38, 43] boots a modified Linux
kernel in this fashion, and supports kernel- and user-space
communication channels between kernels [41], and pro-
cess migration between kernels. In principle, Popcorn
extended with the ideas in Barrelfish/DC could be com-
bined with Chameleon in a two-level approach to dynamic
processor support.

4 Design

We now describe how Barrelfish/DC decouples cores, ker-
nels, and the rest of the OS. We focus entirely on mecha-
nism in this paper, and so do not address scheduling and
policies for kernel replacement, core power management,
or application migration. Note also that our main motiva-
tion in Barrelfish/DC is adapting the OS for performance
and flexibility, and so we do not consider fault tolerance
and isolation for now.

We first describe how Barrelfish/DC boots a new core,
and then present in stages the problem of per-core state
when removing a core, introducing the Barrelfish/DC ca-
pability system and kernel control block. We then discuss
the challenges of time and interrupts, and finish with a
discussion of the wider implications of the design.

4.1 Booting a new core
Current CPU hotplug approaches assume a single, shared
kernel and a homogeneous (albeit NUMA) machine, with
a variable number of active cores up to a fixed limit, and
so a static in-kernel table of cores (whether active or in-
active) suffices to represent the current hardware state.
Bringing a core online is a question of turning it on, up-
dating this table, and creating per-core state when needed.
Previous versions of Barrelfish also adopted this approach,
and booted all cores during system initialization, though
there has been experimental work on dynamic booting of
heterogeneous cores [35].

Barrelfish/DC targets a broader hardware landscape,
with complex machines comprising potentially hetero-
geneous cores. Furthermore, since Barrelfish/DC runs
a different kernel instance on each core, there is no rea-
son why the same kernel code should run everywhere –
indeed, we show one advantage of not doing this in Sec-
tion 5.3. We thus need an OS representation of a core
on the machine which abstracts the hardware-dependent

mechanisms for bringing that core up (with some kernel)
and down.

Therefore, Barrelfish/DC introduces the concept of a
boot driver, which is a piece of code running on a “home
core” which manages a “target core” and encapsulates
the hardware functionality to boot, suspend, resume, and
power-down the latter. Currently boot drivers run as pro-
cesses, but closely resemble device drivers and could
equally run as software objects within another process.

A new core is brought online as follows:

1. The new core is detected by some platform-specific
mechanism (e.g., ACPI) and its appearance regis-
tered with the device management subsystem.

2. Barrelfish/DC selects and starts an appropriate boot
driver for the new core.

3. Barrelfish/DC selects a kernel binary and arguments
for the new core, and directs the boot driver to boot
the kernel on the core.

4. The boot driver loads and relocates the kernel, and
executes the hardware protocol to start the new core.

5. The new kernel initializes and uses existing Bar-
relfish protocols for integrating into the running OS.

The boot driver abstraction treats CPU cores much like
peripheral devices, and allows us to reuse the OS’s exist-
ing device and hotplug management infrastructure [50]
to handle new cores and select drivers and kernels for
them. It also separates the hardware-specific mechanism
for booting a core from the policy question of what kernel
binary to boot the core with.

Boot drivers remove most of the core boot process from
the kernel: in Barrelfish/DC we have entirely replaced the
existing multiprocessor booting code for multiple archi-
tectures (which was spread throughout the system) with
boot drivers, resulting in a much simpler system structure,
and reduced code in the kernels themselves.

Booting a core (and, indeed, shutting it down) in Bar-
relfish/DC only involves two processes: the boot driver
on the home core, and the kernel on the target core. For
this reason, we require no global locks or other synchro-
nization in the system, and the performance of these oper-
ations is not impacted by load on other cores. We demon-
strate these benefits experimentally in Section 5.1.

Since a boot driver for a core requires (as with a device
driver) at least one existing core to execute, there is a
potential dependency problem as cores come and go. For
the PC platform we focus on here, this is straightforward
since any core can run a boot driver for any other core,
but we note that in general the problem is the same as that
of allocating device drivers to cores.

Boot drivers provide a convenient abstraction of hard-
ware and are also used to shutdown cores, but this is not
the main challenge in removing a core from the system.

5

22 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

4.2 Per-core state

Taking a core out of service in a modern OS is a more
involved process than booting it, since modern multicore
OSes include varying amounts of per-core kernel state. If
they did not, removing a core would be simply require
migrating any running thread somewhere else, updating
the scheduler, and halting the core.

The challenge is best understood by drawing a distinc-
tion between the global state in an OS kernel (i.e., the
state which is shared between all running cores in the
system) and the per-core state, which is only accessed by
a single core. The kernel state of any OS is composed of
these two categories.

In, for example, older versions of Unix, all kernel state
was global and protected by locks. In practice, however, a
modern OS keeps per-core state for scalability of schedul-
ing, memory allocation, virtual memory, etc. Per-core
data structures reduce write sharing of cache lines, which
in turn reduces interconnect traffic and cache miss rate
due to coherency misses.

For example, Linux and Windows use per-core schedul-
ing queues, and distributed memory allocators. Corey [10]
allowed configurable sharing of page tables between
cores, and many Linux scaling enhancements (e.g., [11])
have been of this form. K42 [2] adopted reduced sharing
as a central design principle, and introduced the abstrac-
tion of clustered objects, essentially global proxies for
pervasive per-core state.

Multikernels like Barrelfish [8] push this idea to its
logical conclusion, sharing no data (other than message
channels) between cores. Multikernels are an extreme
point in the design space, but are useful for precisely this
reason: they highlight the problem of consistent per-core
state in modern hardware. As core counts increase, we
can expect the percentage of OS state that is distributed
in more conventional OSes to increase.

Shutting down a core therefore entails disposing of this
state without losing information or violating system-wide
consistency invariants. This may impose significant over-
head. For example, Chameleon [37] devotes considerable
effort to ensuring that per-core interrupt handling state
is consistent across CPU reconfiguration. As more state
becomes distributed, this overhead will increase.

Worse, how to dispose of this state depends on what it
is: removing a per-core scheduling queue means migrat-
ing threads to other cores, whereas removing a per-core
memory allocator requires merging its memory pool with
another allocator elsewhere.

Rather than implementing a succession of piecemeal
solutions to this problem, in Barrelfish/DC we adopt a
radical approach of lifting all the per-core OS state out
of the kernel, so that it can be reclaimed lazily without
delaying the rest of the OS. This design provides the

§4.2)

§4.3)

CNode

...

Frame

Frame

Frame

Frame

PCB PCBKCB (§4.4)

Scheduler State

Cap Derivation Tree

Timer Offset (§4.7)

IRQ State (§4.8) CNode

...

Frame

Frame

Frame

CNode

...

Null

Frame

Frame

Frame

Figure 2: State in the Barrelfish/DC OSnode

means to completely decouple per-core state from both the
underlying kernel implementation and the core hardware.

We find it helpful to use the term OSnode to denote
the total state of an OS kernel local to a particular core.
In Linux the OSnode changes with different versions of
the kernel; Chameleon identifies this state by manual
annotation of the kernel source code. In Barrelfish, the
OSnode is all the state – there is no shared global data.

4.3 Capabilities in Barrelfish/DC

Barrelfish/DC captures the OSnode using its capability
system: all memory and other resources maintained by the
core (including interrupts and communication end-points)
are represented by capabilities, and thus the OSnode is
represented by the capability set of the core. The per-core
state of Barrelfish/DC is shown schematically in Figure 2.

Barrelfish/DC’s capability system, an extension of that
in Barrelfish [44], is derived from the partitioned capabil-
ity scheme used in seL4 [19, 20, 28].

In seL4 (and Barrelfish), all regions of memory are
referred to by capabilities, and capabilities are typed to re-
flect what the memory is used for. For example, a “frame”
capability refers to memory that the holder can map into
their address space, while a “c-node” capability refers to
memory that is used to store the bit representations of
capabilities themselves. The security of the system as
a whole derives from the fact that only a small, trusted
computing base (the kernel) holds both a frame capability
and a c-node capability to the same memory, and can
therefore fabricate capabilities.

A capability for a region can be split into two smaller
regions, and also retyped according to a set of system
rules that preserve integrity. Initially, memory regions
are of type “untyped”, and must be explicitly retyped to

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 23

“frame”, “c-node”, or some other type.
This approach has the useful property that a process can

allocate memory without being able to access its contents.
This is used in seL4 to remove any dynamic memory allo-
cation from the kernel, greatly simplifying both the formal
specification of the kernel and its subsequent proof [20].
All kernel objects (such as process control blocks, or page
tables) are allocated by user-level processes which can,
themselves, not access them directly.

A key insight of Barrelfish/DC is that this approach can
externalize the kernel state entirely, as follows.

4.4 Kernel Control Blocks
In developing Barrelfish/DC, we examined the Barrelfish
kernel to identify all the data structures which were not
direct (optimized) derivations of information already held
in the capability tree (and which could therefore be recon-
structed dynamically from the tree). We then eliminated
from this set any state that did not need to persist across a
kernel restart.

For example, the runnable state and other scheduling
parameters of a process2 are held in the process’ control
block, which is part of the capability system. However,
the scheduler queues themselves do not need to persist
across a change of kernel, since (a) any scheduler will
need to recalculate them based on the current time, and
(b) the new scheduler may have a completely different
policy and associated data structures anyway.

What remained was remarkably small: it consists of:

• The minimal scheduling state: the head of a linked
list of a list of process control blocks.

• Interrupt state. We discuss interrupts in Section 4.8.
• The root of the capability derivation tree, from which

all the per-core capabilities can be reached.
• The timer offset, discussed in Section 4.7.

In Barrelfish/DC, we introduce a new memory object,
the Kernel Control Block (KCB), and associated capability
type, holding this data in a standard format. The KCB is
small: for 64-bit x86 it is about 28 KiB in size, almost
all of which is used by communication endpoints for
interrupts.

4.5 Replacing a kernel
The KCB effectively decouples the per-core OS state from
the kernel. This allows Barrelfish/DC to shut down a ker-
nel on a core (under the control of the boot driver running
on another core) and replace it with a new one. The cur-
rently running kernel saves a small amount of persistent

2Technically, it is a Barrelfish “dispatcher”, the core-local repre-
sentation of a process. A process usually consists of a set of distinct
“dispatchers”, one in each OSnode.

state in the KCB, and halts the core. The boot driver
then loads a new kernel with an argument supplying the
address of the KCB. It then restarts the core (using an IPI
on x86 machines), causing the new kernel to boot. This
new kernel then initializes any internal data structures it
needs from the KCB and the OSnode capability database.

The described technique allows for arbitrary updates of
kernel-mode code. By design, the kernel does not access
state in the OSnode concurrently. Therefore, having a qui-
escent state in the OSnode before we shut-down a core is
always guaranteed. The simplest case for updates requires
no changes in any data structures reachable by the KCB
and can be performed as described by simply replacing
the kernel code. Updates that require a transformation
of the data structures may require a one-time adaption
function to execute during initialization, whose overhead
depends on the complexity of the function and the size of
the OSnode. The worst-case scenario is one that requires
additional memory, since the kernel by design delegates
dynamic memory allocation to userspace.

As we show in Section 5, replacing a kernel can be
done with little performance impact on processes running
on the core, even device drivers.

4.6 Kernel sharing and core shutdown

As we mentioned above, taking a core completely out
of service involves not simply shutting down the kernel,
but also disposing of or migrating all the per-core state
on the core, and this can take time. Like Chameleon,
Barrelfish/DC addresses this problem by deferring it: we
immediately take the core down, but keep the OSnode
running in order to be able to dismantle it lazily. To
facilitate this, we created a new kernel which is capable
of multiplexing several KCBs (using a simple extension
to the existing scheduler).

Performance of two active OSnodes sharing a core is
strictly best-effort, and is not intended to be used for any
case where application performance matters. Rather, it
provides a way for an OSnode to be taken out of service
in the background, after the core has been shut down.

Note that there is no need for all cores in Barrelfish/DC
to run this multiplexing kernel, or, indeed, for any cores
to run it when it is not being used – it can simply replace
an existing kernel on demand. In practice, we find that
there is no performance loss when running a single KCB
above a multiplexing kernel.

Decoupling kernel state allows attaching and detaching
KCBs from a running kernel. The entry point for kernel
code takes a KCB as an argument. When a new kernel is
started, a fresh KCB is provided to the kernel code. To
restart a kernel, the KCB is detached from the running ker-
nel code, the core is shut down, and the KCB is provided
to the newly booted kernel code.

7

24 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

We rely on shared physical memory when moving
OSnodes between cores. This goes against the original
multikernel premise that assumes no shared memory be-
tween cores. However, an OSnode is still always in use
by strictly one core at the time. Therefore, the benefits
of avoiding concurrent access in OSnode state remain.
We discuss support for distributed memory hardware in
Section 6.

The combination of state externalization via the KCB
and kernel sharing on a single core has a number of further
applications, which we describe in Section 4.10.

4.7 Dealing with time
One of the complicating factors in starting the OSnode
with a new kernel is the passage of time. Each ker-
nel maintains a per-core internal clock (based on a free-
running timer, such as the local APIC), and expects this
to increase monotonically. The clock is used for per-
core scheduling and other time-sensitive tasks, and is also
available to application threads running on the core via a
system call.

Unfortunately, the hardware timers used are rarely syn-
chronized between cores. Some hardware (for example,
modern PCs) define these timers to run at the same rate
on every core (regardless of power management), but they
may still be offset from each other. On other hardware
platforms, these clocks may simply run at different rates
between cores.

In Barrelfish/DC we address this problem with two
fields in the KCB. The first holds a constant offset from
the local hardware clock; the OS applies this offset when-
ever the current time value is read.

The second field is set to the current local time when
the kernel is shut down. When a new kernel starts with
an existing KCB, the offset field is reinitialized to the
difference between this old time value and the current
hardware clock, ensuring that local time for the OSnode
proceeds monotonically.

4.8 Dealing with interrupts
Interrupts pose an additional challenge when moving an
OSnode between cores. It is important that interrupts from
hardware devices are always routed to the correct kernel.
In Barrelfish interrupts are then mapped to messages de-
livered to processes running on the target core. Some
interrupts (such as those from network cards) should “fol-
low” the OSnode to its new core, whereas others should
not. We identify three categories of interrupt.

1. Interrupts which are used exclusively by the kernel,
for example a local timer interrupt used to imple-
ment preemptive scheduling. Handling these inter-
rupts is internal to the kernel, and their sources are

typically per-core hardware devices like APICs or
performance counters. In this case, there is no need
to take additional actions when reassigning KCBs
between cores.

2. Inter-processor interrupts (IPIs), typically used for
asynchronous communication between cores. Bar-
relfish/DC uses an indirection table that maps
OSnode identifiers to the physical core running the
corresponding kernel. When one kernel sends an
IPI to another, it uses this table to obtain the hard-
ware destination address for the interrupt. When
detaching a KCB from a core, its entry is updated
to indicate that its kernel is unavailable. Similarly,
attaching a KCB to a core, updates the location to
the new core identifier.

3. Device interrupts, which should be forwarded to a
specific core (e.g. via IOAPICs and PCIe bridges)
running the handler for the device’s driver.

When Barrelfish/DC device drivers start up they re-
quest forwarding of device interrupts by providing two
capability arguments to their local kernel: an opaque in-
terrupt descriptor (which conveys authorization to receive
the interrupt) and a message binding. The interrupt de-
scriptor contains all the architecture-specific information
about the interrupt source needed to route the interrupt to
the right core. The kernel associates the message binding
with the architectural interrupt and subsequently forwards
interrupts to the message channel.

For the device and the driver to continue normal op-
eration, the interrupt needs to be re-routed to the new
core, and a new mapping is set up for the (existing) driver
process. This could be done either transparently by the
kernel, or explicitly by the device driver.

We choose the latter approach to simplify the kernel.
When a Barrelfish/DC kernel shuts down, it disables all
interrupts. When a new kernel subsequently resumes an
OSnode, it sends a message (via a scheduler upcall) to
every process which had an interrupt registered. Each
driver process responds to this message by re-registering
its interrupt, and then checking with the device directly
to see if any events have been missed in the meantime
(ensuring any race condition is benign). In Section 5.2.1
we show the overhead of this process.

4.9 Application support
From the perspective of applications which are oblivi-
ous to the allocation of physical cores (and which deal
solely with threads), the additional functionality of Bar-
relfish/DC is completely transparent. However, many
applications such as language runtimes and database sys-
tems deal directly with physical cores, and tailor their
scheduling of user-level threads accordingly.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 25

For these applications, Barrelfish/DC can use the ex-
isting scheduler activation [1] mechanism for process
dispatch in Barrelfish to notify userspace of changes in
the number of online processors, much as it can already
convey the allocation of physical cores to applications.

4.10 Discussion
From a broad perspective, the combination of boot drivers
and replaceable kernels is a radically different view of
how an OS should manage processors on a machine. Mod-
ern general-purpose kernels such as Linux try to support
a broad set of requirements by implementing different
behaviors based on build-time and run-time configuration.
Barrelfish/DC offers an alternative: instead of building
complicated kernels that try to do many things, build sim-
ple kernels that do one thing well. While Linux selects
a single kernel at boot time for all cores, Barrelfish/DC
allows selecting not only per-core kernels, but changing
this selection on-the-fly.

There are many applications for specialized kernels,
including those tailored for running databases or language
run-times, debugging or profiling, or directly executing
verified user code as in Google’s native client [49].

To take one example, in this paper we demonstrate
support for hard real-time applications. Despite years
of development of real-time support features in Linux
and other general-purpose kernels [16], many users resort
to specialized real-time OSes, or modified versions of
general-purpose OSes [32].

Barrelfish/DC can offer hard real-time support by re-
booting a core with a specialized kernel, which, to elim-
inate OS jitter, has no scheduler (since it targets a sin-
gle application) and takes no interrupts. If a core is not
preallocated, it must be made available at run-time by
migrating the resident OSnode to another core that runs
a multi-KCB kernel, an operation we call parking. If
required, cache interference from other cores can also
be mitigated by migrating their OSnodes to other pack-
ages. Once the hard real-time application finishes, the
OSnodes can be moved back to the now-available cores.
We evaluate this approach in Section 5.3.

5 Evaluation

We present here a performance evaluation of Bar-
relfish/DC. First (Section 5.1), we measure the perfor-
mance of starting and stopping cores in Barrelfish/DC
and in Linux. Second (Section 5.2), we investigate the be-
havior of applications when we restart kernels, and when
we park OSnodes. Finally, (Section 5.3), we demonstrate
isolating performance via a specialized kernel. We per-
form experiments on the set of x86 machines shown in
Table 1. Hyperthreading, TurboBoost, and SpeedStep

technologies are disabled in machines that support them,
as they complicate cycle counter measurements. Turbo-
Boost and SpeedStep can change the processor frequency
in unpredictable ways, leading to high fluctuation for re-
peated experiments. The same is true for Hyperthreading
due to sharing of hardware logic between logical cores.
However, TurboBoost and Hyperthreading are both rele-
vant for this work as discussed in Section 6 and Section 1.

packages×cores/uarch CPU model

2×2 Santa-Rosa 2.8 GHz Opteron 2200
4×4 Shanghai 2.5 GHz Opteron 8380
2×10 SandyBridge 2.5 GHz Xeon E5-2670 v2
1×4 Haswell 3.4 GHz Xeon E3-1245 v3

Table 1: Systems we use in our evaluation. The first column
describes the topology of the machine (total number of packages
and cores per package) and the second the CPU model.

5.1 Core management operations
In this section, we evaluate the performance of managing
cores in Barrelfish/DC, and also in Linux using the CPU
Hotplug facility [4]. We consider two operations: shutting
down a core (down) and bringing it back up again (up).

Bringing up a core in Linux is different from bringing
up a core in Barrelfish/DC. In Barrelfish/DC, each core
executes a different kernel which needs to be loaded by
the boot driver, while in Linux all cores share the same
code. Furthermore, because cores share state in Linux,
core management operations require global synchroniza-
tion, resulting in stopping application execution in all
cores for an extended period of time [23]. Stopping cores
is also different between Linux and Barrelfish/DC. In
Linux, applications executed in the halting core need to
be migrated to other online cores before the shutdown can
proceed, while in Barrelfish/DC we typically would move
a complete OSnode after the shutdown and not individual
applications.

In Barrelfish/DC, the down time is the time it takes the
boot driver to send an appropriate IPI to the core to be
halted plus the propagation time of the IPI and the cost of
the IPI handler in the receiving core. For the up operation
we take two measurements: the boot driver cost to prepare
a new kernel up until (and including) the point where it
sends an IPI to the starting core (driver), and the cost in
the booted core from the point it wakes up until the kernel
is fully online (core).

In Linux, we measure the latency of starting or stopping
a core using the log entry of the smpboot module and a
sentinel line echoed to /dev/kmsg. For core shutdown,
smboot reports when the core becomes offline, and we
insert the sentinel right before the operation is initiated.

9

26 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Barrelfish/DC Linux
idle load idle load

down
up

down
up

driver core driver core down up down up
(µs) (ms) (ms) (µs) (ms) (ms) (ms) (ms) (ms) (ms)

2×2 Santa-Rosa 2.7 / —a 29 1.2 2.7 / — 34±17 1.2 131±25 20±1 5049±2052 26±5
4×4 Shanghai 2.3 / 2.6 24 1.0 2.3 / 2.7 46±76 1.0 104±50 18±3 3268± 980 18±3
2×10 SandyBridge 3.5 / 3.7 10 0.8 3.6 / 3.7 23±52 0.8 62±46 21±7 2265±1656 23±5
1×4 Haswell 0.8 / —a 7 0.5 0.8 / — 7±0.1 0.5 46±40 14±1 2543±1710 20±5

Results in cycles
×103 ×106 ×106 ×103 ×106 ×106 ×106 ×106 ×106 ×106

2×2 Santa-Rosa 8 / — 85 3.4 8 / — 97±49 3.5 367± 41 56±2.0 14139±5700 74±21
4×4 Shanghai 6 / 6 63 2.6 6 / 7 115±192 2.6 261±127 44±2.0 8170±2452 46± 8
2×10 SandyBridge 9 / 10 27 2.1 9 / 10 59±133 2.1 155±116 53±2.0 5663±4141 57±12
1×4 Haswell 3 / — 26 1.9 2.9 / — 26±0.40 2.0 156±137 50±0.5 8647±5816 69±16

Table 2: Performance of core management operations for Barrelfish/DC and Linux (3.13) when the system is idle and when the
system is under load. For the Barrelfish/DC down column, the value after the slash shows the cost of stopping a core on another
socket with regard to the boot driver. aWe do not include this number for Santa-Rosa because it lacks synchronized timestamp
counters, nor for Haswell because it only includes a single package.

For core boot, smpboot reports when the operation starts,
so we insert the sentinel line right after the operation.

For both Barrelfish/DC and Linux we consider two
cases: an idle system (idle), and a system with all cores
under load (load). In Linux, we use the stress tool [45]
to spawn a number of workers equal to the number of
cores that continuously execute the sync system call. In
Barrelfish/DC, since the file-system is implemented as a
user-space service, we spawn an application that contin-
uously performs memory management system calls on
each core of the system.

Table 2 summarizes our results. We show both time
(msecs and µsecs) and cycle counter units for convenience.
All results are obtained by repeating the experiment 20
times, and calculating the mean value. We include the
standard deviation where it is non-negligible.

Stopping cores: The cost of stopping cores in Bar-
relfish/DC ranges from 0.8 µs (Haswell) to 3.5 µs (Sandy-
Bridge). Barrelfish/DC does not share state across cores,
and as a result no synchronization between cores is needed
to shut one down. Furthermore, Barrelfish/DC’ shutdown
operation consists of sending an IPI, which will cause the
core to stop after a minimal operation in the KCB (saving
the timer offset). In fact, the cost of stopping a core in
Barrelfish/DC is small enough to observe the increased
cost of sending an IPI across sockets, leading to an in-
crease of 5% in stopping time on SandyBridge and 11%
on Shanghai. These numbers are shown in Table 2, in
the Barrelfish/DC down columns after the slash. As these
measurements rely on timestamp counters being synchro-
nized across packages, we are unable to present the cost

Figure 3: Breakdown of the cost of bringing up a core for the
Haswell machine.

increase of a cross-socket IPI on the Santa-Rosa machine
whose timestamp counters are only synchronized within
a single package.

In stark contrast, the cost of shutting down a core in
Linux ranges from 46 ms to 131 ms. More importantly,
the shutdown cost in Linux explodes when applying load,
while it generally remains the same for Barrelfish/DC. For
example, the average time to power down a core in Linux
on Haswell is increased by 55 times when we apply load.

Starting cores: For Barrelfish/DC, the setup cost in the
boot driver (driver) dominates the cost of starting a core
(core). Fig. 3 shows a breakdown of the costs for bringing
up a core on Haswell. Starting core corresponds to the

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 27

core Table 2 column, while the rest corresponds to oper-
ations performed by the boot driver: loading the image
from storage, allocating memory, ELF loading and relo-
cation, etc. Loading the kernel from the file system is the
most expensive operation. If multiple cores are booted
with the same kernel, this image can be cached, signifi-
cantly improving the time to start a core as shown in the
second bar in Fig. 3. We note that the same costs will
dominate the restart operation since shutting down a core
has negligible cost compared to bringing it up. Downtime
can be minimized by first doing the necessary prepara-
tions in the boot driver and then halting and starting the
core.

Even though Barrelfish/DC has to prepare the ker-
nel image, when idle, the cost of bringing up a core
for Barrelfish/DC is similar to the Linux cost (Bar-
relfish/DC is faster on our Intel machines, while the op-
posite is true for our AMD machines). Bringing a core
up can take from 7 ms (Barrelfish/DC/Haswell) to 29 ms
(Barrelfish/DC/Santa-Rosa). Load affects the cost of boot-
ing up a core to varying degrees. In Linux such an effect
is not observed in the Shanghai machine, while in the
Haswell machine load increases average start time by
33%. The effect of load when starting cores is generally
stronger in Barrelfish/DC (e.g., in SandyBridge the cost
is more than doubled) because the boot driver time-shares
its core with the load generator.

Overall, Barrelfish/DC has minimal overhead stopping
cores. For starting cores, results vary significantly across
different machines but the cost of bringing up cores in
Barrelfish/DC is comparable to the respective Linux cost.

5.2 Applications

In this section, we evaluate the behavior of real applica-
tions under two core management operations: restarting,
where we update the core kernel as the application runs,
and parking. In parking, we run the application in a core
with a normal kernel and then move its OSnode into a
multi-KCB kernel running on a different core. While the
application is parked it will share the core with another
OSnode. We use a naive multi-KCB kernel that runs each
KCB for 20 ms, which is two times the scheduler time
slice. Finally, we move the application back to its original
core. The application starts by running alone on its core.
We execute all experiments in the Haswell machine.

5.2.1 Ethernet driver

Our first application is a Barrelfish NIC driver for the
Intel 82574, which we modify for Barrelfish/DC to re-
register its interrupts when instructed by the kernel (see
Section 4.8). During the experiment we use ping from a
client machine to send ICMP echo requests to the NIC.

We run ping as root with the -A switch, where the inter-
packet intervals adapt to the round-trip time. The ping
manual states: “on networks with low rtt this mode is
essentially equivalent to flood mode.”

Fig. 4a shows the effect of the restart operation in the
round-trip time latency experienced by the client. Initially,
the ping latency is 0.042 ms on average with small varia-
tion. Restarting the kernel produces two outliers (packets
2307 and 2308 with an RTT of 11.1 ms and 1.07 ms, re-
spectively). Note that 6.9 ms is the measured latency to
bring up a core on this machine (Table 2).

We present latency results for the parking experiment in
a timeline (Fig. 4b), and in a cumulative distribution func-
tion (CDF) graph (Fig. 4c). Measurements taken when
the driver’s OSnode runs exclusively on a core are de-
noted Exclusive, while measurements where the OSnode
shares the core are denoted Shared. When parking be-
gins, we observe an initial latency spike (from 0.042 ms
to 73.4 ms). The spike is caused by the parking operation,
which involves sending a KCB capability reference from
the boot driver to the multi-KCB kernel as a message.3

After the initial coordination, outliers are only caused by
KCB time-sharing (maximum: 20 ms, mean: 5.57 ms).
After unparking the driver, latency returns to its initial lev-
els. Unparking does not cause the same spike as parking
because we do not use messages: we halt the multi-KCB
kernel and directly pass the KCB reference to a newly
booted kernel.

5.2.2 Web server

In this experiment we examine how a web server4 that
serves files over the network behaves when its core is
restarted and when its OSnode is parked. We initiate a
transfer on a client machine in the server’s LAN using
wget and plot the achieved bandwidth for each 50 KiB
chunk when fetching a 1 GiB file.

Fig. 4d shows the results for the kernel restart exper-
iment. The effect in this case is negligible on the client
side. We were unable to pinpoint the exact location of
the update taking place from the data measured on the
client and the actual download times during kernel up-
dates were indistinguishable from a normal download. As
expected, parking leads to a number of outliers caused by
KCB time-sharing (Figures 4e and 4f). The average band-
width before the parking is 113 MiB/s and the standard
deviation 9 MiB/s, whereas during parking the average
bandwidth is slightly lower at 111 MiB/s with a higher
standard deviation of 19 MiB/s.

3We follow the Barrelfish approach, where kernel messages are
handled by the monitor, a trusted OS component that runs in user-space.

4The Barrelfish native web server.

11

28 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

(a) Ethernet driver restart (b) Ethernet driver parking (c) Ethernet driver parking CDF

(d) Web server restart (e) Web server parking (f) Web server parking CDF

(g) PostgreSQL restart (h) PostgreSQL parking (i) PostgreSQL parking CDF

Figure 4: Application behavior when restarting kernels and parking OSnodes. For each application we include a timeline graph for
restarting, and a timeline and a CDF graph for parking.

5.2.3 PostgreSQL

Next, we run a PostgreSQL [39] database server in Bar-
relfish/DC, using TPC-H [46] data with a scaling factor
of 0.01, stored in an in-memory file-system. We measure
the latency of a repeated CPU-bound query (query 9 in
TPC-H) on a client over a LAN.

Fig. 4g shows how restart affects client latency. Before
rebooting, average query latency is 36 ms. When a restart
is performed, the first query has a latency of 51 ms. After
a few perturbed queries, latency returns to its initial value.

Figures 4h and 4i show the effect of parking the
OSnode that contains the PostgreSQL server. As before,
during normal operation the average latency is 36 ms.
When the kernel is parked we observe two sets of outliers:
one (with more points) with a latency of about 76 ms, and
one with latency close to 56 ms. This happens, because
depending on the latency, some queries wait for two KCB
time slices (20 ms each) of the co-hosted kernel, while

others wait only for one.
Overall, we argue that kernel restart incurs acceptable

overhead for online use. Parking, as expected, causes a
performance degradation, especially for latency-critical
applications. This is, however, inherent in any form of
resource time-sharing. Furthermore, with improved KCB-
scheduling algorithms the performance degradation can
be reduced or tuned (e.g., via KCB priorities).

5.3 Performance isolation
Finally, we illustrate the benefits of Barrelfish/DC’ sup-
port for restarting cores with specialized kernels using
the case of hard-real time applications where eliminat-
ing OS jitter is required. To ensure that the application
will run uninterrupted, we assign a core with a special-
ized kernel that does not implement scheduling and does
not handle interrupts (see Section 4.10). We evaluate
the performance isolation that can be achieved with our

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 29

(a) Histogram for all samples

(b) CDF for samples in the range of 6–7k cycles

Figure 5: Number of cycles measured for 103 iterations of a
synthetic benchmark for Barrelfish/DC, Barrelfish, and Linux
using real-time priorities.

specialized kernel compared to the isolation provided by:
(i) an unmodified Barrelfish kernel, and (ii) a Linux 3.13
kernel where we set the application to run with real-time
priority. We run our experiments on the Haswell machine,
ensuring that no other applications run on the same core.

To measure OS jitter we use a synthetic benchmark
that only performs memory stores to a single location.
Our benchmark is intentionally simple to minimize per-
formance variance caused by architectural effects. We
sample the timestamp counter every 103 iterations, for a
total of 106 samples. Fig. 5a shows a histogram of sam-
pled cycles, where for all systems, most of the values
fall into the 6-7 thousand range (i.e., 6-7 cycles latency
per iteration). Fig. 5b presents the CDF graph for the
6–7 kcycles range, showing that there are no significant
differences for the three systems in this range.

Contrarily to the Barrelfish/DC dedicated kernel where
all of the samples are in the 6-7k range, in Linux and Bar-
relfish we observe significant outliers that fall outside this
range. Since we run the experiment on the same hardware,

under the same configuration, we attribute the outliers to
OS jitter. In Barrelfish the outliers reach up to 68k cy-
cles (excluded from the graph). Linux performs better
than Barrelfish, but its outliers still reach 27–28 kcycles.
We ascribe the worse behavior of Barrelfish compared to
Linux to OS services running in user-space.

We conclude that Barrelfish/DC enables the online de-
ployment of a dedicated, simple to build, OS kernel that
eliminates OS jitter and provides hard real-time guaran-
tees.

6 Future directions

Our ongoing work on Barrelfish/DC includes both ex-
ploring the broader applications of the ideas, and also
removing some of the existing limitations of the system.

On current hardware, we plan to investigate the power-
management opportunities afforded by the ability to re-
place cores and migrate the running OS around the hard-
ware. One short-term opportunity is to fully exploit Intel’s
Turbo Boost feature to accelerate a serial task by temporar-
ily vacating (and thereby cooling) neighboring cores on
the same package.

We also intend to use core replacement as a means
to improve OS instrumentation and tracing facilities, by
dynamically instrumenting kernels running on particular
cores at runtime, removing all instrumentation overhead
in the common case. Ultimately, as kernel developers we
would like to minimize whole-system reboots as much as
possible by replacing single kernels on the fly.

Barrelfish/DC currently assumes cache-coherent cores,
where the OS state (i.e., the OSnode) can be easily mi-
grated between cores by passing physical addresses. The
lack of cache-coherency per se can be handled with suit-
able cache flushes, but on hardware platforms without
shared memory, or with different physical address spaces
on different cores, the OSnode might not require con-
siderable transformation to migrate between cores. The
Barrelfish/DC capability system does contain all the in-
formation necessary to correctly swizzle pointers when
copying the OSnode between nodes, but the copy is likely
to be expensive, and dealing with shared-memory appli-
cation state (which Barrelfish fully supports outside the
OS) is a significant challenge.

A somewhat simpler case to deal with is moving an
OSnode between a virtual and physical machine, allowing
the OS to switch from running natively to running in a
VM container.

Note that there is no requirement for the boot driver
to share memory with its target core, as long as it has a
mechanism for loading a kernel binary into the latter’s
address space and controlling the core itself.

When replacing kernels, Barrelfish/DC assumes that
the OSnode format (in particular, the capability system)

13

30 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

remains unchanged. If the in-memory format of the capa-
bility database changes, then the new kernel must perform
a one-time format conversion when it boots. It is unclear
how much of a limitation this is in practice, since the ca-
pability system of Barrelfish has changed relatively little
since its inception, but one way to mitigate the burden of
writing such a conversion function is to exploit the fact
that the format is already specified in a domain-specific
high-level language called Hamlet [17] to derive the con-
version function automatically.

While Barrelfish/DC decouples cores, kernels, and the
OS state, the topic of appropriate policies for using these
mechanisms without user intervention is an important
area for future work. We plan to investigate policies that,
based on system feedback, create new kernels to replace
others, and move OSnodes across cores.

Finally, while Barrelfish/DC applications are notified
when the core set they are running on changes (via the
scheduler activations mechanism), they are currently in-
sulated from knowledge about hardware core reconfigura-
tions. However, there is no reason why this must always
be the case. There may be applications (such as databases,
or language runtimes) which can benefit from being no-
tified about such changes to the running system, and we
see no reason to hide this information from applications
which can exploit it.

7 Conclusion

Barrelfish/DC presents a radically different vision of how
cores are exploited by an OS and the applications running
above it, and implements it in a viable software stack:
the notion that OS state, kernel code, and execution units
should be decoupled and freely interchangeable. Bar-
relfish/DC is an OS whose design assumes that all cores
are dynamic.

As hardware becomes more dynamic, and scalability
concerns increase the need to partition or replicate state
across cores, system software will have to change its
assumptions about the underlying platform, and adapt
to a new world with constantly shifting hardware. Bar-
relfish/DC offers one approach to meeting this challenge.

8 Acknowledgements

We would like to thank the anonymous reviews and our
shepherd, Geoff Voelker, for their encouragement and
helpful suggestions. We would also like to acknowledge
the work of the rest of the Barrelfish team at ETH Zurich
without which Barrelfish/DC would not be possible.

References
[1] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND

LEVY, H. M. Scheduler activations: Effective kernel support for
the user-level management of parallelism. ACM Transactions on
Computer Systems 10, 1 (1992), 53–79.

[2] APPAVOO, J., DA SILVA, D., KRIEGER, O., AUSLANDER, M.,
OSTROWSKI, M., ROSENBURG, B., WATERLAND, A., WIS-
NIEWSKI, R. W., XENIDIS, J., STUMM, M., AND SOARES, L.
Experience distributing objects in an SMMP OS. ACM Transac-
tions on Computer Systems 25, 3 (2007).

[3] ARNOLD, J., AND KAASHOEK, M. F. Ksplice: Automatic reboot-
less kernel updates. In Proceedings of the EuroSys Conference
(2009), pp. 187–198.

[4] ASHOK RAJ. CPU hotplug support in the Linux kernel. https://
www.kernel.org/doc/Documentation/cpu-hotplug.txt.

[5] The Barrelfish Operating System. http://www.barrelfish.
org/, 12.04.14.

[6] BARTLETT, J. F. A NonStop Kernel. In Proceedings of the
8th ACM Symposium on Operating Systems Principles (1981),
pp. 22–29.

[7] BAUMANN, A., APPAVOO, J., WISNIEWSKI, R. W., SILVA,
D. D., KRIEGER, O., AND HEISER, G. Reboots are for hardware:
Challenges and solutions to updating an operating system on the
fly. In Proceedings of the USENIX Annual Technical Conference
(2007), pp. 1–14.

[8] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T.,
ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the 22nd ACM
Symposium on Operating System Principles (2009), pp. 29–44.

[9] BAUMANN, A., HEISER, G., APPAVOO, J., DA SILVA, D.,
KRIEGER, O., WISNIEWSKI, R. W., AND KERR, J. Provid-
ing dynamic update in an operating system. In Proceedings of the
USENIX Annual Technical Conference (2005), pp. 279–291.

[10] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN, L., WU,
M., DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey: An operating
system for many cores. In Proceedings of the 8th Symposium on
Operating Systems Design and Implementation (2008), pp. 43–57.

[11] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV,
A., KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. An
Analysis of Linux Scalability to Many Cores. In Proceedings of
the 9th USENIX Conference on Operating Systems Design and
Implementation (2010), pp. 1–8.

[12] BUTLER, M., BARNES, L., SARMA, D. D., AND GELINAS, B.
Bulldozer: An approach to multithreaded compute performance.
IEEE Micro 31, 2 (Mar. 2011), 6–15.

[13] CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL, A. H.
Dynamic instrumentation of production systems. In Proceedings
of the USENIX Annual Technical Conference (2004), pp. 15–28.

[14] CHAPIN, J., ROSENBLUM, M., DEVINE, S., LAHIRI, T., TEO-
DOSIU, D., AND GUPTA, A. Hive: Fault containment for shared-
memory multiprocessors. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (1995), pp. 12–25.

[15] CHARLES, J., JASSI, P., S, A. N., SADAT, A., AND FEDOROVA,
A. Evaluation of the Intel Core i7 Turbo Boost feature. In Pro-
ceedings of the IEEE International Symposium on Workload Char-
acterization (2009).

[16] CORBET, J. Deadline scheduling for 3.14. http:
//www.linuxfoundation.org/news-media/blogs/
browse/2014/01/deadline-scheduling-314, 12.04.14.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 31

[17] DAGAND, P.-E., BAUMANN, A., AND ROSCOE, T. Filet-o-Fish:
practical and dependable domain-specific languages for OS de-
velopment. In Proceedings of the 5th Workshop on Programming
Languages and Operating Systems (2009).

[18] DEPOUTOVITCH, A., AND STUMM, M. Otherworld: Giving Ap-
plications a Chance to Survive OS Kernel Crashes. In Proceedings
of the EuroSys Conference (2010), pp. 181–194.

[19] DERRIN, P., ELKADUWE, D., AND ELPHINSTONE, K. seL4
Reference Manual. NICTA, 2006. http://www.ertos.nicta.
com.au/research/sel4/sel4-refman.pdf.

[20] ELKADUWE, D., DERRIN, P., AND ELPHINSTONE, K. Ker-
nel design for isolation and assurance of physical memory. In
Proceedings of the 1st Workshop on Isolation and Integration in
Embedded Systems (2008), pp. 35–40.

[21] ESMAEILZADEH, H., BLEM, E., ST. AMANT, R., SANKAR-
ALINGAM, K., AND BURGER, D. Dark Silicon and the End of
Multicore Scaling. In Proceedings of the 38th Annual Interna-
tional Symposium on Computer Architecture (2011), pp. 365–376.

[22] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S. Safe
and automatic live update for operating systems. In Proceedings
of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (2013), pp. 279–
292.

[23] GLEIXNER, T., MCKENNEY, P. E., AND GUITTOT, V. Cleaning
up Linux’s CPU hotplug for real time and energy management.
SIGBED Rev. 9, 4 (Nov. 2012), 49–52.

[24] HARDY, N. KeyKOS Architecture. SIGOPS Operating Systems
Review 19, 4 (1985), 8–25.

[25] CPU hotplug. https://wiki.linaro.org/WorkingGroups/
PowerManagement/Archives/Hotplug, 12.04.14.

[26] IPEK, E., KIRMAN, M., KIRMAN, N., AND MARTINEZ, J. F.
Core Fusion: Accommodating Software Diversity in Chip Mul-
tiprocessors. In Proceedings of the 34th Annual International
Symposium on Computer Architecture (2007), pp. 186–197.

[27] JOSHI, A. Twin-Linux: Running independent Linux Kernels
simultaneously on separate cores of a multicore system. In Pro-
ceedings of the Linux Symposium (2010), pp. 101–108.

[28] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium on Operating System
Principles (2009).

[29] KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. Niagara:
a 32-way multithreaded sparc processor. IEEE Micro 25, 2 (2005),
21–29.

[30] KOZUCH, M. A., KAMINSKY, M., AND RYAN, M. P. Migration
without virtualization. In Proceedings of the 12th Workshop on
Hot Topics in Operating Systems (2009), pp. 10–15.

[31] KUMAR, R., FARKAS, K. I., JOUPPI, N. P., RANGANATHAN,
P., AND TULLSEN, D. M. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power Reduction. In
Proceedings of the 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (2003), pp. 81–92.

[32] Real-time Linux. https://rt.wiki.kernel.org/, 12.04.14.

[33] LIU, R., KLUES, K., BIRD, S., HOFMEYR, S., ASANOVIĆ, K.,
AND KUBIATOWICZ, J. Tessellation: Space-time partitioning in a
manycore client OS. In Proceedings of the 1st USENIX Workshop
on Hot Topics in Parallelism (2009).

[34] MARR, D. T., DESKTOP, F. B., HILL, D. L., HINTON, G.,
KOUFATY, D. A., MILLER, J. A., AND UPTON, M. Hyper-
Threading Technology Architecture and Microarchitecture. Intel
Technology Journal (Feb 2002).

[35] MENZI, D. Support for heterogeneous cores for Barrelfish. Mas-
ter’s thesis, Department of Computer Science, ETH Zurich, July
2011.

[36] NOMURA, Y., SENZAKI, R., NAKAHARA, D., USHIO, H.,
KATAOKA, T., AND TANIGUCHI, H. Mint: Booting multiple
Linux kernels on a multicore processor. In Proceedings of the
International Conference on Broadband and Wireless Computing,
Communication and Applications (2011), pp. 555–560.

[37] PANNEERSELVAM, S., AND SWIFT, M. M. Chameleon: Operat-
ing system support for dynamic processors. In Proceedings of the
17th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (2012), pp. 99–110.

[38] Popcorn Linux. http://popcornlinux.org/, 12.04.14.

[39] PostgreSQL. http://www.postgresql.org/, 12.04.14.

[40] RHODEN, B., KLUES, K., ZHU, D., AND BREWER, E. Improv-
ing per-node efficiency in the datacenter with new OS abstractions.
In Proceedings of the 2nd ACM Symposium on Cloud Computing
(2011), pp. 25:1–25:8.

[41] SADINI, M., BARBALACE, A., RAVINDRAN, B., AND QUAGLIA,
F. A Page Coherency Protocol for Popcorn Replicated-kernel
Operating System. In Proceedings of the ManyCore Architecture
Research Community Symposium (MARC) (Oct. 2013).

[42] SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS: A
Fast Capability System. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles (1999), pp. 170–185.

[43] SHELDON, B. H. Popcorn Linux: enabling efficient inter-core
communication in a Linux-based multikernel operating system.
Master’s thesis, Virginia Polytechnic Institute and State University,
May 2013.

[44] SINGHANIA, A., KUZ, I., AND NEVILL, M. Capability Manage-
ment in Barrelfish. Technical Note 013, Barrelfish Project, ETH
Zurich, December 2013.

[45] Stress Load Generator. http://people.seas.harvard.edu/
~apw/stress/, 12.04.14.

[46] TPC-H. http://www.tpc.org/tpch/, 12.04.14.

[47] VENKATESH, G., SAMPSON, J., GOULDING, N., GARCIA, S.,
BRYKSIN, V., LUGO-MARTINEZ, J., SWANSON, S., AND TAY-
LOR, M. B. Conservation Cores: Reducing the energy of mature
computations. In Proceedings of the 15th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (2010), pp. 205–218.

[48] WENTZLAFF, D., GRUENWALD III, C., BECKMANN, N.,
MODZELEWSKI, K., BELAY, A., YOUSEFF, L., MILLER, J.,
AND AGARWAL, A. An operating system for multicore and
clouds: Mechanisms and implementation. In ACM Symposium on
Cloud Computing (SOCC) (June 2010).

[49] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR,
N. Native client: A sandbox for portable, untrusted x86 native
code. In Proceedings of the 30th IEEE Symposium on Security
and Privacy (2009), pp. 79–93.

[50] ZELLWEGER, G., SCHUEPBACH, A., AND ROSCOE, T. Unifying
Synchronization and Events in a Multicore OS. In Proceedings of
the 3rd Asia-Pacific Workshop on Systems (2012).

15

