Short Communications
Programming Languages

What Can We Do about the
Unnecessary Diversity of
Notation for Syntactic
Definitions?

Niklaus Wirth
Federal Institute of Technology (ETH), Ziirich, and
Xerox Palo Alto Research Center

Key Words and Phrases: syntactic description
language, extended BNF
CR Categories: 4.20

The population of programming languages is stead-
ily growing, and there is no end of this growth in sight.
Many language definitions appear in journals, many
are found in technical reports, and perhaps an even
greater number remains confined to proprietory circles.
After frequent exposure to these definitions, one can-
not fail to notice the lack of “common denominators.”
The only widely accepted fact is that the language
structure is defined by a syntax. But even notation for
syntactic description eludes any commonly agreed stan-
dard form, although the underlying ancestor is invaria-
bly the Backus-Naur Form of the Algol 60 report. As
variations are often only slight, they become annoying
for their very lack of an apparent motivation.

Out of sympathy with the troubled reader who is
weary of adapting to a new variant of BNF each time
another language definition appears, and without any
claim for originality, I venture to submit a simple
notation that has proven valuable and satisfactory in
use. It has the following properties to recommend it:
1. The notation distinguishes clearly between meta-,

terminal, and nonterminal symbols.

2. It does not exclude characters used as metasymbols
from use as symbols of the language (as e.g. *|” in
BNF).

3. It contains an explicit iteration construct, and
thereby avoids the heavy use of recursion for
expressing simple repetition.

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Author’s present address: Xerox Corporation, Palo Alto Re-
search Center, 3333 Coyote Hill Road, Palo Alto, CA 94304,

Communications November 1977
of Volume 20
the ACM Number 11

4. It avoids the use of an explicit symbol for the
empty string (such as {empty) or €).
5. Itis based on the ASCII character set,

This meta language can therefore conveniently be
used to define its own syntax, which may serve here as
an example of its use. The word identifier is used to
denote nonterminal symbol, and literal stands for termi-
nal symboL For brevity, identifier and character are
not defined in further detail.

syntax = {production}.

production = identifier "'="" expression "."".
expression = term {"|" term},

term = factor {factor}.

factor = identifier | literal | ""("’ expression ")" |
n[n eprCSSiOH n]f) J II{H EXpreSSiOH “}”.
literal = """ character {character} " " """

Repetition is denoted by curly brackets, i.e. {a}
stands for € | a | aa|aaa}. ...~ Optionality is expressed
by square brackets, i.e.:[a] stands'for a | €. Parentheses
merely serve for grouping, e.g: (a|b)c stands for ac | be.
Terminal symbols, i.e.:literals; are. enclosed-in quote
marks (and;if a-quote mark:appears as a:litetalitself, it
is writteri- twice), which -is: consistent with.:common
practice in"programming languages. .

‘Received January 1977; revised February 1977

