
0018-9162/06/$20.00 © 2006 IEEE56 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Magnetic bubble memory
Back when magnetic core memories dominated, the

idea of magnetic bubble memory appeared. As usual, its
advocates attached great hopes to this concept, plan-
ning for it to replace all kinds of mechanically rotating
devices, the primary sources of troubles and unreliabil-
ity. Although magnetic bubbles would still rotate in a
magnetic field within a ferrite material, there would be
no mechanically moving part. Like disks, they were a
serial device, but rapid progress in disk technology made
both the bubbles’ capacity and speed inferior, so devel-
opers quietly buried the idea after a few years’ research.

Cryogenics
Cryogenic devices offered a new technology that kept

high hopes alive for decades, particularly in the super-
computer domain. These devices promised ultrahigh
switching speeds, but the effort to operate large com-
puting equipment at temperatures close to absolute zero
proved prohibitive. The appearance of personal com-
puters let cryogenic dreams either freeze or evaporate.

Tunnel diodes
Some developers proposed using tunnel diodes—so

named because of their reliance on a quantum effect of
electrons passing over an energy barrier without having
the necessary energy—in place of transistors as switch-
ing and memory elements.

The tunnel diode has a peculiar characteristic with a
negative segment. This lets it assume two stable states.
A germanium device, the tunnel diode has no silicon-
based counterpart. This made it work over only a rela-

Given that thorough self-critique is the hallmark of any subject claiming to be

a science, computing science cannot help but benefit from a retrospective analysis

and evaluation.

Niklaus Wirth

C O V E R F E A T U R E

C omputing’s history has been driven by many
good and original ideas, but a few turned out
to be less brilliant than they first appeared. In
many cases, changes in the technological envi-
ronment reduced their importance. Often,

commercial factors also influenced a good idea’s impor-
tance. Some ideas simply turned out to be less effective
and glorious when reviewed in retrospect or after proper
analysis. Others were reincarnations of ideas invented
earlier and then forgotten, perhaps because they were
ahead of their time, perhaps because they had not exem-
plified current fashions and trends. And some ideas were
reinvented, although they had already been found want-
ing in their first incarnation.

This led me to the idea of collecting good ideas that
looked less than brilliant in retrospect. A recent talk by
Charles Thacker about obsolete ideas—those that dete-
riorate by aging—motivated this work. I also rediscov-
ered an article by Don Knuth titled “The Dangers of
Computer-Science Theory.” Thacker delivered his talk
in far away China, Knuth from behind the Iron Curtain
in Romania in 1970, both places safe from the damag-
ing “Western critique.” Knuth’s document in particu-
lar, with its tongue-in-cheek attitude, encouraged me to
write these stories.

HARDWARE TECHNOLOGY
Speed has always been computer engineers’ prevalent

concern. Refining existing techniques has been one alley
for pursuing this goal, looking for alternative solutions
the other. Although presented as most promising, the
following searches ultimately proved unsuccessful.

Good Ideas,
Through the
Looking Glass

January 2006 57

tively narrow temperature range. Silicon tran-
sistors became faster and cheaper at a rate that
let researchers forget the tunnel diode.

COMPUTER ARCHITECTURE
This topic provides a rewarding area for find-

ing good ideas. A fundamental issue has been
representing numbers, particularly integers.

Representing numbers
Here, the key question has been the choice of the

numbers’ base. Virtually all early computers featured
base 10—a representation by decimal digits, just as
everybody learned in school.

However, a binary representation with binary digits is
clearly more economical. An integer n requires log10(n)
decimal digits, but only log2(n) binary digits (bits).
Because a decimal digit requires four bits, decimal rep-
resentation requires about 20 percent more storage than
binary, which shows the binary form’s clear advantage.
Yet, developers retained the decimal representation for
a long time, and it persists today in library module form.
They did so because they continued to believe that all
computations must be accurate.

However, errors occur through rounding, after divi-
sion for example. The effects of rounding can differ
depending on the number representation, and a binary
computer can yield different results than a decimal com-
puter. Because financial transactions—where accuracy
matters most—traditionally were computed by hand
with decimal arithmetic, developers felt that computers
should produce the same results in all cases—and thus
commit the same errors.

Although the binary form will generally yield more
accurate results, the decimal form remained the pre-
ferred option in financial applications, as a decimal
result can easily be hand-checked if required.

Although perhaps understandable, this was clearly a
conservative idea. Consider that until the advent of the
IBM System 360 in 1964, which featured both binary
and decimal arithmetic, manufacturers of large com-
puters offered two lines of products: binary computers
for their scientific customers and decimal computers for
their commercial customers—a costly practice.

Early computers represented integers by their magni-
tude and a separate sign bit. In machines that relied on
sequential addition, digit by digit, to be read first, the
system placed the sign at the low end. When bit paral-
lel processing became possible, the sign moved to the
high end, again in analogy to the commonly used paper
notation. However, using a sign-magnitude representa-
tion was a bad idea because addition requires different
circuits for positive and negative numbers.

Representing negative integers by their complement
evidently provided a far superior solution, because the
same circuit could now handle both addition and sub-

traction. Some designers chose 1’s complement, where
−n was obtained from n by simply inverting all bits.
Some chose 2’s complement, where −n is obtained by
inverting all bits and then adding 1. The former has the
drawback of featuring two forms for zero (0…0 and
1…1). This is nasty, particularly if available compari-
son instructions are inadequate.

For example, the CDC 6000 computers had an
instruction that tested for zero, recognizing both forms
correctly, but also an instruction that tested the sign bit
only, classifying 1…1 as a negative number, making
comparisons unnecessarily complicated. This case of
inadequate design reveals 1’s complement as a bad idea.
Today, all computers use 2’s complement arithmetic.
The different forms are shown in Table 1.

Fixed or floating-point forms can represent numbers
with fractional parts. Today, hardware usually features
floating-point arithmetic, that is, a representation of a
number x by two integers, an exponent e and a man-
tissa m, such that x = Be?m.

For some time, developers argued about which expo-
nent base B they should choose. The Burroughs B5000
introduced B = 8, and the IBM 360 used B = 16, both in
1964, in contrast to the conventional B = 2. The inten-
tion was to save space through a smaller exponent range
and to accelerate normalization because shifts occur in
larger steps of 3- or 4-bit positions only.

This, however, turned out to be a bad idea, as it aggra-
vated the effects of rounding. As a consequence, it was
possible to find values x and y for the IBM 360, such
that, for some small, positive ε, (x+ε)?(y+ε) < (x ? y).
Multiplication had lost its monotonicity. Such a multi-
plication is unreliable and potentially dangerous.

Data addressing
The earliest computers’ instructions consisted simply

of an operation code and an absolute address or literal
value as the parameter. This made self-modification by
the program unavoidable. For example, if numbers
stored in consecutive memory cells had to be added in
a loop, the program had to modify the address of the
add instruction in each step by adding 1 to it.

Although developers heralded the possibility of pro-
gram modification at runtime as one of the great con-
sequences of John von Neumann’s profound idea of

Table 1. Using 2’s complement arithmetic to avoid ambiguous results.

Decimal 2’s complement 1’s complement

2 010 010
1 001 001
0 000 000 or 111
-1 111 110
-2 110 101

storing program and data in the same memory, it quickly
turned out to enable a dangerous technique and to con-
stitute an unlimited source of pitfalls. Program code
must remain untouched to avoid having the search for
errors become a nightmare. Developers quickly recog-
nized that program self-modification was an extremely
bad idea.

They avoided these pitfalls by introducing another
addressing mode that treated an address as a piece of
variable data rather than as part of a program instruc-
tion, which would be better left untouched. The solu-
tion involved indirect addressing and modifying only
the directly addressed address, a data word.

Although this feature removed the
danger of program self-modification
and remained common on most
computers until the mid 1970s, it
should be considered a questionable
idea in retrospect. After all, it
required two memory accesses for
each data access, which caused con-
siderable computation slowdown.

The “clever” idea of multilevel
indirection made this situation worse.
The data accessed would indicate
with a bit whether the referenced word was the desired
data or another—possibly again indirect—address. Such
machines could be brought to a standstill by specifying a
loop of indirect addresses.

The solution lay in introducing index registers. The
value stored in an index register would be added to the
address constant in the instruction. This required adding
a few index registers and an adder to the arithmetic
unit’s accumulator. The IBM 360 merged them all into
a single register bank, as is now customary.

The CDC 6000 computers used a peculiar arrangement:
Instructions directly referred to registers only, of which
there were three banks: 60-bit data (X) registers, 18-bit
address (A) registers, and 18-bit index (B) registers.
Memory access was implicitly evoked by every reference
to an A-register, whose value was modified by adding a
B-register’s value. The odd thing was that references to
A0-A5 implied fetching the addressed memory location
into the corresponding X0-X5 register, whereas a refer-
ence to A6 or A7 implied storing X6 or X7.

Although this arrangement did not cause any great
problems, we can retrospectively classify it as a mediocre
idea because a register number determines the opera-
tion performed and thus the data transfer’s direction.
Apart from this, the CDC 6000 featured several excel-
lent ideas, primarily its simplicity. Although Seymour
Cray designed it in 1962, well before the term was
coined, the CDC 6000 can truly be called the first RISC
machine.

The Burroughs B5000 machine introduced a more
sophisticated addressing scheme—its descriptor scheme,

primarily used to denote arrays. A so-called data
descriptor was essentially an indirect address, but it also
contained index bounds to be checked at access time.

Although automatic index checking was an excellent
and almost visionary facility, the descriptor scheme
proved a questionable idea because matrices (multidi-
mensional arrays) required a descriptor of an array of
descriptors, one for each row or column of the matrix.
Every n-dimensional matrix access required an n-times
indirection. The scheme evidently not only slowed access
due to its indirection, it also required additional rows
of descriptors. Nevertheless, Java’s designers adopted
this idea in 1995, as did C#’s designers in 2000.

Expression stacks
The Algol 60 language had a pro-

found influence not only on the
development of further program-
ming languages, but also, to a more
limited extent, on computer archi-
tecture. This should not be surpris-
ing given that language, compiler,
and computer form an inextricable
complex.

The evaluation of expressions
could be of arbitrary complexity in Algol, with subex-
pressions being parenthesized and operators having their
individual binding strengths. Results of subexpressions
were stored temporarily. F.L. Bauer and E.W. Dijkstra
independently proposed a scheme for evaluating arbi-
trary expressions. They noticed that when evaluating
from left to right, obeying priority rules and parenthe-
ses, the last item stored is always the first to be needed.
It therefore could conveniently be placed in a push-down
list, or stack.

Implementing this simple strategy using a register bank
was straightforward, with the addition of an implicit
up/down counter holding the top register’s index. Such a
stack reduced memory accesses and avoided explicitly
identifying individual registers in the instructions. In
short, stack computers seemed to be an excellent idea,
and the English Electric KDF-9 and the Burroughs B5000
computers both implemented the scheme, although it
obviously added to their hardware complexity.

Given that registers were expensive resources, the
question of how deep the stack should be arose. After
all, the B5000 used two registers only, along with an
automatic pushdown into memory, if more than two
intermediate results required storage. This seemed rea-
sonable. As Knuth had pointed out in an analysis of
many Fortran programs, the overwhelming majority of
expressions required only one or two registers.

Still, the idea of an expression stack proved question-
able, particularly after the advent in the mid 1960s of
architectures with register banks. These architectures sac-
rificed simplicity of compilation for any gain in execution

58 Computer

The Algol 60 language
profoundly influenced

not only the development
of programming

languages but also
computer architecture.

January 2006 59

speed. The stack organization restricted the use of a
scarce resource to a fixed strategy. But sophisticated com-
pilation algorithms use registers more economically, given
the flexibility of specifying individual registers in each
instruction.

Storing return addresses in the code
The subroutine jump instruction, invented by D.

Wheeler, deposits the program counter value to be
restored when the subroutine terminates. The challenge
involves choosing the place to deposit the value. In sev-
eral computers, particularly minicomputers but also the
CDC 6000 mainframe, a jump instruction to location d
would deposit the return address at
d, then continue execution at loca-
tion d+1:

mem[d] := PC+1; PC := d+1

This was a bad idea for at least
two reasons. First, it prevented call-
ing a subroutine recursively. Algol
introduced recursion and caused
much controversy because these pro-
cedure calls could no longer be han-
dled in this simple way given that a
recursive call would overwrite the previous call’s return
address. Hence, the return address had to be fetched
from the fixed place dictated by the hardware and rede-
posited in a place unique to the recursive procedure’s
particular incarnation. This overhead was unacceptable
to many computer designers and users, forcing them to
declare recursion undesirable, useless, and forbidden.
They refused to acknowledge that the difficulty arose
because of their inadequate call instruction.

Second, this solution proved a bad idea because it pre-
vented multiprocessing. Given that program code and
data were not kept separate, each concurrent process
had to use its own copy of the code.

Some later hardware designs, notably the RISC archi-
tectures of the 1990s, accommodated recursive proce-
dure calls by introducing specific registers dedicated to
stack addressing and depositing return addresses relative
to their value. Depositing the addresses in one of the
general-purpose registers, presuming the availability of
a register bank, is probably the best idea, because it
leaves freedom of choice to the compiler designer while
keeping the basic subroutine instruction as efficient as
possible.

Virtual addressing
Like compiler designers, operating system designers

had their own favorite ideas they wanted implemented.
Such wishes appeared with the advent of multiprocess-
ing and time-sharing, concepts that gave birth to oper-
ating systems in general.

The guiding idea was to use the processor optimally,
switching it to another program as soon as the one
under execution would be blocked by, for example, an
input or output operation. The various programs were
thereby executed in interleaved pieces, quasiconcur-
rently. As a consequence, requests for memory alloca-
tion and release occurred in an unpredictable, arbitrary
sequence. Yet, individual programs were compiled
under the premise of a linear address space, a contigu-
ous memory block. Worse, physical memory would typ-
ically not be large enough to accommodate enough
processes to make multiprocessing beneficial.

Developers found a clever solution to this dilemma—
indirect addressing, hidden this time
from the programmer. Memory
would be subdivided into blocks or
pages of fixed length, a power of 2.
The system would use a page table to
map a virtual address into a physical
address. As a consequence, individ-
ual pages could be placed anywhere
in store and, although spread out,
would appear as a contiguous area.
Even better, pages not finding their
slot in memory could be placed in the
backyard, on large disks. A bit in the

respective page table entry would indicate whether the
data was currently on disk or in main memory.

This clever and complex scheme, useful in its time,
posed some problems. It practically required all mod-
ern hardware to feature page tables and address map-
ping and to hide the cost of indirect addressing—not to
mention disposing and restoring pages on disk in unpre-
dictable moments—from the unsuspecting user.

Even today, most processors use page mapping and
most operating systems work in the multiuser mode.
But this has become a questionable idea because semi-
conductor memories have become so large that map-
ping and outplacing are no longer beneficial. Yet, the
overhead of the complex mechanism of indirect address-
ing remains with us.

Ironically, virtual addressing is still used for a purpose
for which it was never intended: Trapping references to
nonexistent objects, against using NIL pointers. NIL is
represented by 0, yet the page at address 0 is never allo-
cated. This dirty trick misuses the heavy virtual address-
ing scheme and should have been solved straight-
forwardly.

Complex instruction sets
Early computers featured small sets of simple instruc-

tions because they operated with a minimal amount of
expensive circuitry. With hardware becoming cheaper,
the temptation rose to incorporate more complicated
instructions such as conditional jumps with three tar-
gets, instructions that incremented, compared, and con-

Depositing the addresses
in a general-purpose

register leaves compiler
designers freedom of

choice while keeping the
basic subroutine instruction

as efficient as possible.

60 Computer

ditionally branched all in one, or complex move and
translate operations.

With the advent of high-level languages, developers
sought to accommodate certain language constructs
with correspondingly tailored instructions such as
Algol’s for statement or instructions for recursive pro-
cedure calls. Feature-tailored instructions were a smart
idea because they contributed to code density, an impor-
tant factor when memory was a scarce resource that
consisted of 64 Kbytes or less.

This trend set in as early as 1963. The Burroughs
B5000 machine not only accommodated many of
Algol’s complicated features, it combined a scientific
computer with a character-string machine and included
two computers with different instruction sets. Such an
extravagance had become possible with the technique of
microprograms stored in fast, read-only memories. This
feature also made the idea of a computer family feasi-
ble: The IBM Series 360 consisted of a set of computers,
all with the same instruction set and architecture, at
least from the programmer’s perspective. However,
internally the individual machines differed vastly. The
low-end machines were microprogrammed, the genuine
hardware executing a short microprogram interpreting
the instruction code. The high-end machines, however,
implemented all instructions directly. This technology
continued with single-chip microprocessors like Intel’s
8086, Motorola’s 68000, and National’s 32000.

The NS processor offers a fine example of a complex
instruction set computer (CISC). Congealing frequent
instruction patterns into a single instruction improved
code density significantly and reduced memory accesses,
increasing execution speed.

The NS processor accommodated, for example, the
new concept of module and separate compilation with

an appropriate call instruction. Code segments
were linked when loaded, the compiler having
provided tables with linking information.
Minimizing the number of linking operations,
which replace references to the link tables by
absolute addresses, is certainly a good idea. The
scheme, which simplifies the linker’s task, leads
to the storage organization for every module, as
Figure 1 shows.

A dedicated register MOD points to module
M’s descriptor, which contains the procedure P
currently being executed. Register PC is the reg-
ular program counter. Register SB contain the
address of M’s data segment, including M’s sta-
tic, global variables. All these registers change
their values whenever the system calls an exter-
nal procedure. To speed up this process, the
processor offers the call external procedure
(CXP) in addition to the regular branch sub-
routine (BSR). A pair of corresponding returns,
RXP and RTS, is also available.

Assume now that a procedure P in a module M is to
be activated. The CXP instruction’s parameter d speci-
fies the entry in the current link table. From this the sys-
tem obtains the address of M’s descriptor and also the
offset of P within M’s code segment. From the descrip-
tor, the system then obtains M’s data segment and loads
it into SB—all with a single, short instruction. However,
what was gained in linking simplicity and code density
must be paid for somewhere, namely by an increased
number of indirect references and, incidentally, by addi-
tional hardware—the MOD and SB registers.

A second, similar example involves an instruction to
check array bounds. It compared an array index against
the array’s lower and upper bounds and caused a trap if
the index did not lie within the bounds, thereby combin-
ing two comparison and two branch instructions in one.

Several years after our Oberon compiler had been
built and released, new, faster versions of the processor
appeared. They went with the trend of implementing
frequent, simple instructions directly with hardware and
letting an internal microcode interpret the complex
instructions. As a result, those language-oriented
instructions became rather slow compared to the simple
operations. So I decided to program a new version of
the compiler that refrained from using the sophisticated
instructions.

This produced astonishing results. The new code exe-
cuted considerably faster, making it apparent that the
computer architect and the compiler designers had opti-
mized in the wrong place.

Indeed, in the early 1980s advanced microprocessors
began to compete with old mainframes, featuring com-
plex and irregular instruction sets. These sets had
become so complex that most programmers could use
only a small fraction of them. Also, compilers selected

Register
MOD

Register
SB

Program
code

Program
counter

Static
data

Register
PB

Register
SB

Links

Register
PB

Offset

Link
table

Disp

Off/mod

Figure 1. Module storage organization. A dedicated register MOD points
to module M’s descriptor, which contains the procedure P currently being
executed. Register PC is the regular program counter. Register SB contains
the address of M’s data segment, including M’s static, global variables. All
these registers change their values whenever the system calls an external
procedure.

only from a subset of the available instructions, a clear
sign that hardware architects had gone overboard.
Around 1990, the reaction became manifest in the form
of reduced instruction set computers (RISC)—notably
the ARM, MIPS, and Sparc architectures. They featured
a small set of simple instructions, all executing in a sin-
gle clock cycle, a single addressing mode, and a fairly
large, single bank of registers—in short, a highly regu-
lar structure. These architectures debunked CISCs as a
bad idea.

PROGRAMMING LANGUAGE FEATURES
Programming languages offer a fertile ground for con-

troversial ideas. Some of these were not only question-
able, but also known to be bad from
the outset. The features proposed for
Algol in 1960 and for some of its
successors1 provide an excellent
example.

Most people consider a program-
ming language merely as code with
the sole purpose of constructing
software for computers to run.
However, a language is a computa-
tion model, and programs are for-
mal texts amenable to mathematical reasoning. The
model must be defined so that its semantics are delin-
eated without reference to an underlying mechanism,
be it physical or abstract.

This makes explaining a complex set of features and
facilities in large volumes of manuals appear as a
patently bad idea. Actually, a language is characterized
not so much by what it lets us program as by what it
keeps us from expressing. As E.W. Dijkstra observed,
the programmer’s most difficult, daily task is to not mess
things up. The first and most noble duty of a language
is thus to help in this eternal struggle.

Notation and syntax
It has become fashionable to regard notation as a sec-

ondary issue depending purely on personal taste. This
could partly be true; yet the choice of notation should
not be considered arbitrary. It has consequences and
reveals the language’s character.

Choosing the equal sign to denote assignment is one
notoriously bad example that goes back to Fortran in
1957 and has been copied blindly by armies of language
designers since. This bad idea overthrows a century-old
tradition to let = denote a comparison for equality, a
predicate that is either true or false. But Fortran made
this symbol mean assignment, the enforcing of equality.
In this case, the operands are on unequal footing: The
left operand, a variable, is to be made equal to the right
operand, an expression. Thus, x = y does not mean the
same thing as y = x. Algol corrected this mistake with a
simple solution: Let assignment be denoted by :=.

This might appear as nitpicking to programmers accus-
tomed to the equal sign meaning assignment. But mixing
up assignment and comparison truly is a bad idea because
it requires using another symbol for what the equal sign
traditionally expresses. Comparison for equality became
denoted by the two characters == (first in C). This is an
ugly consequence that gave rise to similar bad ideas using
++, —, &&, and so on.

Some of these operators exert side effects in C, C++,
Java, and C#, a notorious source of programming mis-
takes. It might be acceptable to, for example, let ++
denote incrementation by 1, if it would not also denote
the incremented value, thereby allowing expressions
with side effects. The trouble lies in the elimination of

the fundamental distinction between
statement and expression. The for-
mer is an instruction to be executed,
the latter a value to be computed and
evaluated.

The ugliness of a construct usually
appears in combination with other
language features. In C, a program-
mer might write x+++++y, a riddle
rather than an expression, and a
challenge for even a sophisticated

parser. Is its value equal to ++x+++y+1? Or is the fol-
lowing correct?

x+++++y+1==++x+++y
x+++y++==x+++++y+1

We might as well postulate a new algebra. I find
absolutely surprising the equanimity with which the
programmer community worldwide has accepted this
notational monster. In 1962, the postulating of opera-
tors being right-associative in the APL language made
a similar break with established convention. Now x+y+z
suddenly stood for x+(y+z), and x-y-z for x-y+z.

Algol’s conditional statement provides a case of
unfortunate syntax rather than merely poor symbol
choice, offered in two forms, with S0 and S1 being
statements:

if b then S0
if b then S0 else S1

This definition has given rise to an inherent ambigu-
ity and become known as the “dangling else” problem.
For example, the statement

if b0 then if b1 then S0 else S1

can be interpreted in two ways, namely

if b0 then (if b1 then S0 else S1)
if b0 then (if b1 then S0) else S1

January 2006 61

Choosing the equal sign
to denote assignment is

a notoriously bad example
that goes back to
Fortran in 1957.

62 Computer

{P & b} S {P} implies {P} R0 {P & ¬b}
{P} S {P} implies {P} R1 {P & b}

If, however, S contains a goto statement, no such
assertion is possible about S, and therefore neither is
any deduction about the effect of R. This is a great loss.
Practice has indeed shown that large programs with-
out goto are much easier to understand and it is much
easier to give any guarantees about their properties.

Enough has been said and written about this nonfea-
ture to convince almost everyone that it is a primary
example of a bad idea. Pascal’s designer retained the
goto statement as well as the if statement without a clos-
ing end symbol. Apparently, he lacked the courage to
break with convention and made wrong concessions to
traditionalists. But that was in 1968. By now, almost
everybody understands the problem except for the
designers of the latest commercial programming lan-
guages, such as C#.

Switches
If a feature is a bad idea, then features built atop it

are even worse. This rule can be demonstrated by the
switch, which is essentially an array of labels. Assuming,
for example, labels L1, … L5, a switch declaration in
Algol could look as follows:

switch S := L1, L2, if x < 5 then L3 else L4, L5

Now the apparently simple statement goto S[i] is equiv-
alent to

if i = 1 then goto L1 else
if i = 2 then goto L2 else
if i = 3 then

if x < 5 then goto L3 else goto L4 else
if i = 4 then goto L5
If the goto encourages a programming mess, the

switch makes it impossible to avoid.
C.A.R. Hoare proposed a most suitable replacement

of the switch in 1965: the case statement. This construct
displays a proper structure with component statements
to be selected according to the value i:

case i of
1: S1 | 2: S2 | ……….. | n: Sn

end

However, modern programming language designers
chose to ignore this elegant solution in favor of a bas-
tard formulation between the Algol switch and a struc-
tured case statement:

switch (i) {
case 1: S1; break;
case 2: S2; break;

possibly leading to quite different results. The next exam-
ple appears even graver:

if b0 then for i := 1 step 1 until 100 do if b1 then S0
else S1

because it can be parsed in two ways, yielding quite dif-
ferent computations:

if b0 then [for i := 1 step 1 until 100 do if b1 then S0
else S1]
if b0 then [for i := 1 step 1 until 100 do if b1 then S0]
else S1

The remedy, however, is quite simple: Use an explicit
end symbol in every construct that is recursive and
begins with an explicit start symbol such as if, while,
for, or case:

if b then S0 end
if b then S0 else S1 end

The GOTO statement
In the bad ideas hall of shame, the goto statement has

been the villain of many critics. It serves as the direct
counterpart in languages to the jump statement in
instruction sets and can be used to construct conditional
as well as repeated statements. But it also lets program-
mers construct any maze or mess of program flow, defies
any regular structure, and makes structured reasoning
about such programs difficult if not impossible.

Our primary tools for comprehending and control-
ling complex objects are structure and abstraction. We
break an overly complex object into parts. The specifi-
cation of the whole is based on the specifications of the
parts. The goto statement became the prototype of
a bad programming language idea because it may
break the boundaries of the parts and invalidate their
specifications.

As a corollary, a language must allow, encourage, or
even enforce formulation of programs as properly nested
structures, in which properties of the whole can be
derived from properties of the parts. Consider, for exam-
ple, the specification of a repetition R of a statement S.
It follows that S appears as a part of R. We show two
possible forms:

R0: while b do S end
R1: repeat S until b

The key behind proper nesting is that known proper-
ties of S can be used to derive properties of R. For exam-
ple, given that a condition (assertion) P is left valid
(invariant) under execution of S, we conclude that P is
also left invariant when execution of S is repeated.
Hoare’s rules express this formally as

… ;
case n: Sn; break; }

Either the break symbol denotes a separation between
consecutive statements Si, or it acts as a goto to the end
of the switch construct. In the first case, it is superfluous;
in the second, it is a goto in disguise. A bad concept in a
bad notation, this example stems from C.

Algol’s complicated for statement
Algol’s designers recognized that certain frequent cases

of repetition would better be expressed by a more con-
cise form than in combination with
goto statements. They introduced the
for statement, which is particularly
convenient in use with arrays, as in

for i := 1 step 1 until n do a[i] := 0

If we forgive the rather unfortunate
choice of the words step and until,
this seems a wonderful idea. Unfor-
tunately, it was infected with the bad
idea of imaginative generality. The sequence of values to
be assumed by the control variable i can be specified as
a list:

for i := 2, 3, 5, 7, 11 do a[i] := 0

Further, these elements could be general expressions:

for i := x, x+1, y-5, x*(y+z) do a[i] := 0

Also, different forms of list elements were to be
allowed:

for i := x-3, x step 1 until y, y+7, z while z < 20 do a[i]
:= 0

Naturally, clever minds quickly concocted pathological
cases, demonstrating the concept’s absurdity:

for i := 1 step 1 until I+1 do a[i] := 0
for i := 1 step i until i do i :=—i

The generality of Algol’s for statement should have
been a warning signal to all future designers to keep the
primary purpose of a construct in mind and be wary of
exaggerated generality and complexity, which can eas-
ily become counterproductive.

Algol’s name parameter
Algol introduced procedures and parameters in a

much greater generality than known in older languages
such as Fortran. In particular, parameters were seen as
in traditional mathematics of functions, where the actual
parameter textually replaces the formal parameter.2 For

example, given the declaration

real procedure square(x); real x; square := x * x

the call square(a) is to be literally interpreted as a*a,
and square(sin(a)*cos(b)) as sin(a)*cos(b) * sin(a)*
cos(b). This requires the evaluation of sine and cosine
twice, which in all likelihood was not the programmer’s
intention. To prevent this frequent, misleading case,
Algol’s developers postulated a second kind of parame-
ter: the value parameter. It meant that a local variable,
x’, is to be allocated and then initialized with the value

of the actual parameter, x. With

real procedure square(x); value x;
real x; square := x * x

the above call would be interpreted
as

x’ := sin(a) * cos(b); square := x’ *
x’

avoiding the wasteful double evaluation of the actual
parameter. The name parameter is indeed a most flexible
device, as the following examples demonstrate.

Given the declaration

real procedure sum(k, x, n); integer k, n; real x;
begin real s; s := 0;

for k := 1 step 1 until n do s := x + s;
sum := s

end

Now the sum a1 + a2 + … + a100 is written simply as
sum(i, a[i], 100), the inner product of vectors a and b as
sum(i, a[i]*b[i], 100) and the harmonic function as
sum(i, 1/i, n).

But generality, as elegant and sophisticated as it may
appear, has its price. Reflection reveals that every name
parameter must be implemented as an anonymous, para-
meterless procedure. To avoid paying for the hidden
overhead, a cleverly designed compiler might optimize
certain cases. But mostly inefficiency is caused, which
could easily have been avoided.

We could simply drop the name parameter from the
language. However, this measure would be too drastic
and therefore unacceptable. It would, for example, pre-
clude assignments to parameters to pass results back to
the caller. This suggestion, however, led to the replace-
ment of the name parameter by the reference parameter
in later languages such as Algol W, Pascal, and Ada.

For today, the message is this: Be skeptical about
overly sophisticated features and facilities. At the very
least, their cost to the user must be known before a lan-

January 2006 63

Algol introduced
procedures and parameters
in a much greater generality

than known in older
languages such as Fortran.

64 Computer

guage is released, published, and propagated. This cost
must be commensurate with the advantages gained by
including the feature.

Loopholes
I consider the loophole one of the worst features ever,

even though I infected Pascal, Modula, and even Oberon
with this deadly virus. The loophole lets the programmer
breach the compiler’s type checking and say “Don’t
interfere, as I am smarter than the rules.” Loopholes
take many forms. Most common are explicit type trans-
fer functions, such as

x := LOOPHOLE[i, REAL]
Mesa

x := REAL(i)
Modula

x := SYSTEM.VAL(REAL, i)
Oberon

But they can also be disguised as
absolute address specifications or
by variant records, as in Pascal. In
the preceding examples, the inter-
nal representation of integer i is to be interpreted as a
floating-point number x. This can only be done with
knowledge about number representation, which should
not be necessary when dealing with the abstraction
level the language provides.

Pascal and Modula3 at least displayed loopholes hon-
estly. In Oberon, they are present only through a small
number of functions encapsulated in a pseudo-module
called SYSTEM, which must be imported and is thus
explicitly visible in the heading of any module that uses
such low-level facilities.

This may sound like an excuse, but the loophole is
nevertheless a bad idea. It was introduced to implement
complete systems in a single programming language. For
example, a storage manager must be able to look at stor-
age as a flat array of bytes without data types. It must be
able to allocate blocks and recycle them, independent
of any type constraints. The device driver provides
another example that requires a loophole. Earlier com-
puters used special instructions to access devices. Later,
programmers assigned devices specific memory
addresses, memory-mapping them. Thus, the idea arose
to let absolute addresses be specified for certain vari-
ables, as in Modula. But this facility can be abused in
many clandestine ways.

Evidently, the normal user will never need to program
either a storage manager or a device driver, and hence
has no need for those loopholes. However—and this is
what really makes the loophole a bad idea—program-
mers still have the loophole at their disposal. Experience
showed that normal users will not shy away from using
the loophole, but rather enthusiastically grab on to it as

a wonderful feature that they use wherever possible.
This is particularly so if manuals caution against its use.

The presence of a loophole facility usually points to a
deficiency in the language proper, revealing that certain
things could not be expressed that might be important. For
example, the type ADDRESS in Modula had to be used
to program data structures with different element types. A
strict, static typing strategy, which demanded that every
pointer be statically associated with a fixed type and could
only reference such objects, made this impossible. Knowing
that pointers were addresses, the loophole, in the form of
an innocent-looking type-transfer function, would make

it possible to let pointer variables point
to objects of any type. The drawback
was that no compiler could check the
correctness of such assignments. The
type checking system was overruled
and might as well not have existed.
Oberon4 introduced the clean solution
of type extension, called inheritance in
object- oriented languages. Now it
became possible to declare a pointer
as referencing a given type, and it
could point to any type that was an

extension of the given type. This made it possible to con-
struct inhomogeneous data structures and use them with
the security of a reliable type checking system. An imple-
mentation must check at runtime if and only if it is not
possible to check at compile time.

Programs expressed in 1960s languages were full of
loopholes that made them utterly error-prone. But there
was no alternative. The fact that developers can use a
language like Oberon to program entire systems from
scratch without using loopholes, except in the storage
manager and device drivers, marks the most significant
progress in language design over the past 40 years.

MISCELLANEOUS TECHNIQUES
These bad ideas stem from the wide area of software

practice, or rather from the narrower area of the
author’s experiences with it, dating back 40 years. Yet
the lessons learned then remain valid today. Some reflect
more recent practices and trends, mostly supported by
the abundant availability of hardware power.

Syntax analysis
The 1960s saw the rise of syntax analysis. Using a for-

mal syntax to define Algol provided the necessary under-
pinnings to turn language definition and compiler
construction into a field of scientific merit. It established
the concept of the syntax-driven compiler and gave rise
to many activities for automatic syntax analysis on a
mathematically rigorous basis. This work created the
notions of top-down and bottom-up principles, the
recursive descent technique, and measures for symbol
lookahead and backtracking. Accompanying this were

The presence of a loophole
facility usually points

to a deficiency in
the language proper,

revealing that certain things
could not be expressed.

efforts to define language semantics more rigorously by
piggybacking semantic rules onto corresponding syntax
rules.

As happens with new fields of endeavor, research went
beyond the needs of the hour. Developers built increas-
ingly powerful parser generators, which managed to han-
dle ever more general and complex grammars. Although
an intellectual achievement, this development had a less
positive consequence. It led language designers to believe
that no matter what syntactic construct they postulated,
automatic tools could surely detect ambiguities, and
some powerful parser would certainly cope with it.

Yet no such tool would give any
indication how that syntax could be
improved. Designers had ignored
both the issue of efficiency and that
a language serves the human reader,
not just the automatic parser. If a
language poses difficulties to parsers,
it surely also poses difficulties for the
human reader. Many languages
would be clearer and cleaner had
their designers been forced to use a
simple parsing method.

My own experience strongly supports this statement.
After contributing to the development of parsers for
precedence grammars in the 1960s, and having used
them for the implementation of Euler and Algol W, I
decided to switch to the simplest parsing method for
Pascal: top-down, recursive descent. The experience was
most encouraging, and I have stuck to it to this day with
great satisfaction.

The drawback is that considerably more careful
thought must go into the syntax’s design prior to publi-
cation and any implementation effort. This additional
effort will be more than compensated for in the later use
of both the language and the compiler.

Extensible languages
Computer scientists’ fantasies in the 1960s knew no

bounds. Spurred by the success of automatic syntax
analysis and parser generation, some proposed the idea
of the flexible, or at least extensible, language, envi-
sioning that a program would be preceded by syntactic
rules that would then guide the general parser while
parsing the subsequent program. Further, the syntax
rules also could be interspersed anywhere throughout
the text. For example, it would be possible to use a par-
ticularly fancy private form of for statement, even spec-
ifying different variants for the same concept in different
sections of the same program.

The concept that languages serve to communicate
between humans had been completely blended out, as
apparently now it was possible to define a language on the
fly. However, the difficulties encountered when trying to
specify what these private constructions should mean soon

dashed these high hopes. As a consequence, the intrigu-
ing idea of extensible languages quickly faded away.

Tree-structured symbol tables
Compilers construct symbol tables. The compiler

builds up the tables while processing declarations and
searches them while processing statements. In languages
that allow nested scopes, every scope is represented by
its own table.

Traditionally, these tables are binary trees to allow fast
searching. Having followed this long-standing tradition,
I dared to doubt the benefit of trees when implementing

the Oberon compiler. When doubts
occurred, I quickly became con-
vinced that tree structures are not
worthwhile for local scopes. In the
majority of cases, procedures contain
a dozen or even fewer local variables.
Using a linked linear list is then both
simpler and more effective.

Programs written 30 or 40 years
ago declared most variables globally.
As there were many of them, the tree
structure was justified. In the mean-

time, however, skepticism about the practice of using
global variables has been on the rise. Modern programs
do not feature many globals, and hence in this case a
tree-structured table is hardly suitable.

Modern programming systems consist of many mod-
ules, each of which probably contains some globals, but
not hundreds. The many globals of early programs have
become distributed over numerous modules and are ref-
erenced not by a single identifier, but by a name combi-
nation M.x, which defines the initial search path.

Using sophisticated data structures for symbol tables
was evidently a poor idea. Once, we had even consid-
ered balanced trees.

Using the wrong tools
Although using the wrong tools is an obviously bad

idea, often we discover a tool’s inadequacy only after
having invested substantial effort into building and
understanding it. Investing this effort, unfortunately,
gives the tool perceived value regardless of its functional
worth. This happened to my team when we imple-
mented the first Pascal compiler in 1969.

The tools available for writing programs were assem-
bler code, Fortran, and an Algol compiler. The Algol
compiler was so poorly implemented we dared not rely
on it, and working with assembler code was considered
dishonorable. There remained only Fortran.

Hence, our naïve plan was to use Fortran to construct
a compiler for a substantial subset of Pascal that, when
completed, would be translated into Pascal. Afterward,
we would employ the classic bootstrapping technique
to complete, refine, and improve the compiler.

January 2006 65

If a language
poses difficulties

to parsers,
it surely also poses
difficulties for the

human reader.

66 Computer

This plan crashed in the face of reality. When we com-
pleted step one—after about one person-year’s labor—
it turned out that translating Fortran code into Pascal
was impossible. That program was so much determined
by Fortran’s features, or rather its lack of any, that our
only option was to write the compiler afresh. Because
Fortran did not feature pointers and records, we had to
squeeze symbol tables into the unnatural form of arrays.
Nor did Fortran have recursive subroutines. Hence, we
had to use the complicated table-driven bottom-up pars-
ing technique with syntax represented by arrays and
matrices. In short, employing the advantages of Pascal
required completely rewriting and
restructuring the compiler.

This incident revealed that the
apparently easiest way is not always
the right way. But difficulties also
have their benefits: Because no Pascal
compiler had yet become available,
we had to write the entire program
for compiling a substantial subset of
Pascal without testing feedback. This
proved an extremely healthy exercise
and would be even more so today, in the era of quick trial
and interactive error correction.

After we believed the compiler to be complete, we ban-
ished one member of our team to his home to translate
the program into a syntax-sugared, low-level language
that had an available compiler. He returned after two
weeks of intensive labor, and a few days later the com-
piler written in Pascal compiled the first test programs.

The exercise of conscientious programming proved
extremely valuable. Never do programs contain so few
bugs as when no debugging tools are available.

Thereafter, we could use bootstrapping to obtain new
versions that handled more of Pascal’s constructs and
produced increasingly refined code. Immediately after
the first bootstrap, we discarded the translation written
in the auxiliary language. Its character had been much
like that of the ominous low-level language C, published
a year later.

After this experience, we had trouble understanding
why the software engineering community did not rec-
ognize the benefits of adopting a high-level, type-safe
language instead of C.

Wizards
Thanks to the great leaps forward in parsing technology

originating in the 1960s, hardly anybody now constructs
a parser by hand. Instead, we buy a parser generator and
feed it the desired syntax.

This brings us to the topic of automatic tools, now
called wizards. Given that they have been optimally
designed and laid out by experts, it isn’t necessary for
their users to understand these black boxes. By automat-
ing simple routine tasks, these tools relieve users from

bothering about them. Wizards supposedly help users—
and this is the key—without their asking for help, like
a faithful, devoted servant.

Although it would be unwise to launch a crusade
against wonderful wizards, my experience with them
has been largely unfortunate. I found it impossible to
avoid confronting them in text editors. Worst are those
wizards that constantly interfere with my writing, auto-
matically indenting and numbering lines when not
desired, capitalizing certain letters and words at specific
places, combining sequences of characters into some
special symbol, automatically converting a sequence of

minus signs into a solid line, and so
on. It would help if wizards at least
could be deactivated easily, but typ-
ically they are as obstinate and
immortal as devils.

So much for clever software for
dummies. A bad idea.

PROGRAMMING PARADIGMS
Several programming paradigms

have come into and out of vogue
over the past few decades, making contributions of vary-
ing importance to the field.

Functional programming
Functional languages had their origin in Lisp.5 They

have undergone a significant amount of development
and change and have been used to implement both small
and large software systems. I have always maintained a
skeptical attitude toward such efforts.

What characterizes functional languages? It has
always appeared that it was their form, that the entire
program consists of function evaluations—nested, recur-
sive, parametric, and so on. Hence, the term functional.
However, the core idea is that functions inherently have
no state. This implies that there are no variables and no
assignments. Immutable function parameters—variables
in the mathematical sense—take the place of variables.
As a consequence, freshly computed values cannot be
reassigned to the same variable, overwriting its old
value. This explains why repetition must be expressed by
recursion. A data structure can at best be extended, but
no change can be made to its old part. This yields an
extremely high degree of storage recycling—a garbage
collector is the necessary ingredient. An implementation
without automatic garbage collection is unthinkable.

To postulate a stateless model of computation atop a
machine whose most eminent characteristic is state
seems an odd idea at the least. The gap between model
and machinery is wide, which makes bridging it costly.
No hardware support feature can gloss over this: It
remains a bad idea in practice.

The protagonists of functional languages have also rec-
ognized this over time. They have introduced state and

Never do programs
contain so few bugs

as when no
debugging tools

are available.

variables in various tricky ways. The purely functional
character has thereby been compromised and sacrificed.
The old terminology has become deceiving.

Looking back at functional programming, it appears
that its truly relevant contribution was certainly not
its lack of state, but rather its enforcement of clearly
nested structures and its use of strictly local objects.
This discipline can also be practiced using conven-
tional, imperative languages, which have subscribed to
the notions of nested structures, functions, and recur-
sion for some time.

Functional programming implies much more than
avoiding goto statements, however.
It also implies restriction to local
variables, perhaps with the excep-
tion of a few global state variables.
It probably also considers the nest-
ing of procedures as undesirable.
The B5000 computer apparently
was right, after all, in restricting
access to strictly local and global
variables.

Many years ago, and with increas-
ing frequency, several developers
claimed that functional languages are the best vehicle
for introducing parallelism—although it would be more
to the point to say “to facilitate compilers to detect
opportunities for parallelizing a program.” After all,
determining which parts of an expression can be eval-
uated concurrently is relatively easy. More important
is that parameters of a called function can be evaluated
concurrently, provided that side effects are banned—
which cannot occur in a truly functional language. As
this may be true and perhaps of marginal benefit,
object-orientation offers a more effective way to let a
system make good use of parallelism, with each object
representing its own behavior in the form of a private
process.

Logic programming
Although logic programming has also received wide

attention, only a single well-known language represents
this paradigm: Prolog. Principally, Prolog replaces the
specification of actions, such as assignment to variables,
with the specification of predicates on states. If one or
several of a predicate’s parameters are left unspecified,
the system searches for all possible argument values sat-
isfying the predicate. This implies the existence of a
search engine looking for solutions to logic statements.
This mechanism is complicated, often time-consuming,
and sometimes inherently unable to proceed without
intervention. This, however, requires that the user must
support the system by providing hints, and therefore
must understand what is going on and the process of
logic inference, the very thing the paradigm’s advocates
had promised could be ignored.

We must suspect that, because the community des-
perately desired ways to produce better, more reliable
software, its developers were glad to hear of this possi-
ble panacea. But the promised advancements never
materialized. I sadly recall the exaggerated hopes that
fueled the Japanese Fifth Generation Computer project,
Prolog’s inference machines. Organizations sank large
amounts of resources into this unwise and now largely
forgotten idea.

Object-oriented programming
In contrast to functional and logic programming,

object-oriented programming rests
on the same principles as conven-
tional, procedural programming.
OOP’s character is imperative. It
describes a process as a sequence of
state transformations. The novelty is
the partitioning of a global state into
individual objects and the associa-
tion of the state transformers, called
methods, with the object itself. The
objects are seen as the actors that
cause other objects to alter their state

by sending messages to them. The description of an
object template is called a class definition.

This paradigm closely reflects the structure of systems
in the real world and is therefore well suited to model
complex systems with complex behavior. Not surpris-
ingly, OOP has its origins in the field of system simula-
tion. Its success in the field of software system design
speaks for itself, starting with the language Smalltalk6

and continued with Object-Pascal, C++, Eiffel, Oberon,
Java, and C#.

The original Smalltalk implementation provided a
convincing example of its suitability. The first language
to feature windows, menus, buttons and icons, it pro-
vides a perfect example of visible objects. The direct
modeling of actors diminished the importance of prov-
ing program correctness analytically because the origi-
nal specification is one of behavior, rather than a static
input-output relationship.

Nevertheless, we may wonder where the core of the
new paradigm would hide and how it would differ
essentially from the traditional view of programming.
After all, the old cornerstones of procedural program-
ming reappear, albeit embedded in a new terminology:
Objects are records, classes are types, methods are pro-
cedures, and sending a method is equivalent to calling a
procedure. True, records now consist of data fields and,
in addition, methods; and true, the feature called inher-
itance allows the construction of heterogeneous data
structures, useful also without object orientation.
Whether this change in terminology expresses an essen-
tial paradigm shift or amounts to no more than a sales
trick remains an open question.

January 2006 67

Many years ago,
several developers

claimed that functional
languages are the

best vehicle for
introducing parallelism.

68 Computer

M uch can be learned from analyzing not only bad
ideas and past mistakes, but also good ones.
Although the collection of topics here may

appear accidental, and is certainly incomplete, I wrote it
from the perspective that computing science would ben-
efit from more frequent analysis and critique, particu-
larly self-critique. After all, thorough self-critique is the
hallmark of any subject claiming to be a science. ■

References
1. P. Naur, “Report on the Algorithmic Language ALGOL 60,”

Comm. ACM, May 1960, pp. 299-314.
2. D.E. Knuth, “The Remaining Trouble Spots in ALGOL 60,”

Comm. ACM, Oct. 1967, pp. 611-618.
3. N. Wirth, Programming in Modula-2, Springer-Verlag, 1982.
4. N. Wirth, “The Programming Language Oberon,” Software—

Practice and Experience, Wiley, 1988, pp. 671-691.
5. J. McCarthy, “Recursive Functions of Symbolic Expressions

and their Computation by Machine,” Comm. ACM, May
1962, pp. 184-195.

6. A. Goldberg and D. Robson, Smalltalk-80: The Language and
Its Implementation, Addison-Wesley, 1983.

Niklaus Wirth is a professor of Informatics at ETH Zurich.
His research interests include programming languages, inte-
grated software environments, and hardware design using
field-programmable gate arrays. Wirth received a PhD //in
what discipline??// from the University of California at
Berkeley. Contact him at wirth@inf.ethz.ch.

