ReconfigSys.MemoRISC.doc

Using RISC0 and Oberon-0
N. Wirth 20.7.2011 / 22.9.2011, L. Liu 3.10.2011
This memo describes the use of the RISC computer, implemented on FPGAs, and its compiler for the programming language Oberon-0.

RISC is an architecture designed to explain the fundamental concepts of modern computers (Reduced Instruction Set Computer). For this purpose it lacks features whose sole purpose is to improve speed (optimization).

Oberon-0 is a subset of Oberon, designed for a course on compiler design. Again, the course is focussed on the fundamental concepts of programming languages. Its compiler, generating code for the RISC architecture, is described in [1].
There exist several RISC designs, in fact a sequence emerging from a gradual evolution:

RISC0 is the foundation. It represents a Harvard architecture, that is, a system using separate memories for program and data. In this case, both memories are on-chip, each consisting of 2K (32-bit) words. The clock rate is 25 MHz on a Spartan-3 board.
Any program is first compiled, then loaded and ultimately tested. To run a program on RISC0 implemented on Spartan-3 board you have, please first check out all RISC0 related files from following repository:

https://www.ocp.inf.ethz.ch/svn/rcs2011/students/RISC0
Then follow the steps below to build hardware, compile source code, load code image and finally download bit stream file to the Spartan-3 FPGA.

Step1: build RISC0 processor
Start ISE12.3, and open project file RISC0\hardware\prj\prj.xise, and double click “Generate Programming File” in ISE to generate .bit file for RISC0 implementation.
Step2: compile source code

Run cmd.ext to start DOS shell, then navigate to folder RISC0\test. Execute command OSP.Compile Test7.Mod to compile source code Test7.Mod and generate code image (here ins1.mem).

Step3: patch code image into the hardware implementation and download the final .bit file to the FPGA

In DOS shell, navigate to folder RISC0\hardware\scripts from the command line. Then execute flash.bat ..\..\test to patch the code image ins1.mem generated in folder RISC0\test into the RISC hardware implementation file RISC0\hardware\prj\risc0top.bi and generate risc.bit file, which is downloaded to FPGA via Xilinx iMPACT.
Testing

Hardware configurations are tested by test programs written in Oberon-0. Listed here are two very simple test programs for getting started. The first copies the state of the switches (on the board) to the LEDs. The second represents a counter, whose value is displayed by the LEDs.

MODULE Test0;

CONST swiAdr = -60; ledAdr = -60;

VAR a: INTEGER;

BEGIN

REPEAT GET(swiAdr, a); PUT(ledAdr, a) UNTIL FALSE

END Test0.

MODULE Test7;

CONST ledAdr = -60;

VAR x, y, z: INTEGER;

BEGIN z := 0;

REPEAT PUT(ledAdr, z); x := 1000;

REPEAT y := 1000;

REPEAT y := y-1 UNTIL y = 0;

x := x-1

UNTIL x = 0;

z := z+1

 UNTIL FALSE

END Test7.

Typically, test programs communicate with the hst PC through an RS-232 asynchronous data line. Receiver and transmitter on the FPGA-side are provided by the modules RS232R.v and RS232T.v respectively. From the RISC processor they are accessed via the inbus and outbus (see header of RISC.v, and RISCTop.v) with IO addresses data = -56 and stat = -60.

The following two simple test programs show, how this connection is used. The first copies single bytes from the receiver to the transmitted.

The second example similarly copies integers represented by 4 bytes and preceded by a tag byte. Here we use on the side of the host PC a module TestRISC. It postulates a simple “protocol”. First, a sequence of values is sent to the FPGA, then a sequence is received from the FPGA (see below). All inputs must precede any output.
MODULE Test3;

CONST led = -60; data = -56; stat = -52;

VAR m, n: INTEGER;

PROCEDURE Send(x: INTEGER);

BEGIN

REPEAT UNTIL BIT(stat, 1);

PUT(data, x)

END Send;

PROCEDURE Rec(VAR x: INTEGER);

BEGIN

REPEAT UNTIL BIT(stat, 0);

GET(data, x)

END Rec;

BEGIN PUT(led, 3);

REPEAT Rec(n); PUT(led, n); Send(n) UNTIL FALSE

END Test3.

MODULE Test4;

CONST led = -60; data = -56; stat = -52;

VAR k, m, n: INTEGER;

PROCEDURE Send(x: INTEGER);

BEGIN

REPEAT UNTIL BIT(stat, 1);

PUT(data, x)

END Send;

PROCEDURE Rec(VAR x: INTEGER);

BEGIN

REPEAT UNTIL BIT(stat, 0);

GET(data, x)

END Rec;

PROCEDURE RecInt(VAR x: INTEGER);

VAR i, x0, y: INTEGER;

BEGIN i := 4; x0 := 0;

REPEAT i := i-1; Rec(y); x0 := ROR(x0+y, 8) UNTIL i = 0;

x := x0

END RecInt;

PROCEDURE SendInt(x: INTEGER);

VAR i: INTEGER;

BEGIN Send(1); i := 4;

REPEAT i := i-1; Send(x); x := ROR(x, 8) UNTIL i = 0

END SendInt;

BEGIN PUT(led, 4);

REPEAT RecInt(m); PUT(led, m); SendInt(m); Send(7)

UNTIL FALSE

END Test4.

A further useful procedure is

PROCEDURE SendHex(x: INTEGER);

VAR i: INTEGER;

BEGIN Send(2); i := 4;

REPEAT i := i-1; Send(x); x := ROR(x, 8) UNTIL i = 0

END SendHex;

Sending a single byte “6” ends a line, and a byte “7” ends the input sequence. It is recommended that only those procedures are included in a test module which are actually needed.
On the side of the host PC, communication is handled by the Oberon command
TestRISC.SR sequence ~

Where sequence stands for the sequence of integers (and strings) to be sent before starting to receive output from the FPGA.

PAGE
2

