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A professional programmer’s know-how used to consist of the mastery of a set of
techniques applicable to specific problems and to some specific computer. With the
increase of computer power, the programmers’ tasks grew more complex, and hence
the need for a systematic approach became evident. Recently, the subject of
programming methods, generally applicable rules and patterns of development,
received considerable attention. “‘Structured programming’’ is the formulation of
programs as hierarchical, nested structures of statements and objects of
computation. We give brief examples of structured programs, show the essence of
this approach, diseuss its relationship with program verification, and comment on
the role of structured languages.
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INTRODUCTION

In the first decade of computers, say up to
the early sixties, computers were quite
limited in their power, The task of the pro-
grammer was to formulate algorithms in the
specific order codes of these machines so
that they were utilized as effectively as pos-
gible. Primarily beeause of their imitations,
this task was achieved by collecting sets of
clever techniques and startling tricks, and
by finding applications for them as fre-
quently as possible. Examples of such tech-
niques were the programmed self-modifica-
tion of parts of the program, such as, for
instance, the conversion of conditional jumps
into dummy instructions and vice versa, or
the sharing of store for functionally inde-
pendent, but never simultaneously used
auxiliary variables.

1 This article is a revised and extended version of
s presentation made at International Computing
Symposium 1973, Davos, Switzerland, September
1973.

Tricks were necessary at this time, simply
because machines were built with limitations
imposed by a technology in its early develop-
ment stage, and because even problems that
would be termed “simple’” nowadays could
not be handled in a straightforward way.
It was the programmers’ very task to push
computers to their limits by whatever means
available. We should recall that the absence
of index registers (and indirect addressing),
for example, made automatic code modifica-
tion a mere necessity (see also [1] and [2]).

The essence of programming was under-
stood to be the optimization of the efficiency
of particular machines executing particular
algorithms. As computers grew more power-
ful, the problems posed to the programmers
grew proportionally, and as a result, the
growing power of hardware did not ease,
but rather increased the burden. The elim-
ination of deficiencies, errors and blunders—
called debugging—Dbecame the overwhelming
problem.
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Understandably, the remedy was sought
in the development and use of better tools
in the form of programming languages. The
ameunt of resistance and prejudices which
the farsighted originators of FORTRAN had
to overcome to gain acceptance of their
product is a memorable indication of the
degree to which programmers were pre-
occupied with efficiency, and to which trick-
ology had already become an addiction.
However, once these adversities and fears
had been overcome, ForTranN had a tre-
mendous impact—an impact that is still
felt today. ArgoL 60 followed several years
later; it went beyond ForTrAN in several
significant respects, but essentially shared
the same purpose and intention. In particu-
lar, it extended to the level of statements
what Fortran had introduced on the level
of (arithmetic) expressions: structure. But
AvrcorL 60 was not very successful when
measured by its frequency of use in tech-
nical and commercial applications. There
are many reasons for this, one being that it
appeared on the scene when the relevance
of structure had not yet been widely recog-
nized, and its restrictiveness against the use
of clever tricks was considered to be a handi-
cap and a deficiency. The law of the “Wild
West of Programming’’ was still held in too
high esteem! The same inertia that kept
many assembly code programmers from ad-
vancing to use ForTrAN is now the principal
obstacle against moving from a “FORTRAN
style” to a structured style.

As the power of computers on the one
side, and the complexity and size of the
programmer’s task on the other continued
to grow with a speed unmatched by any
other technological venture, it was gradually
recognized that the true challenge does not
consist in pushing computers to their limits
by saving bits and microseconds, but in
being capable of organizing large and com-
plex programs, and assuring that they
specify a process that for all admitted inputs
produces the desired results. In short, it
became clear that any amount of efficiency
is worthless if we cannot provide reliability
[4]. But how can this reliability be pro-
vided? Here structure enters the scene as
the one essential tool for mastering com-
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plexity, the effective means of converting a
seemingly senseless mass of bits or characters
into meaningful and intelligible information.
We must recognize the strong and undeni-
able influence that our language exerts on
our ways of thinking, and in fact defines
and delimits the abstract space in which we
can formulate—give form to—our thoughts.
But now the term structured programming
has been coined, and it seems finally to be
achieving what the term ‘structured lan-
guage” was unable to suggest. It was first
used by E. W. Dijkstra [3], and has spread
with wvarious Interpretations and connota-
tions since then. It is the expression of a
convietion that the programmers’ knowledge
must not consist of a bag of tricks and trade
secrets, but of a general intellectual ability
to tackle problems systematically, and that
particular techniques should be replaced (or
augmented) by a method. At jts heart lies
an aftitude rather than a recipe: the admis-
sion of the limitations of our minds. The
recognition of these limitations can be used
to our advantage, If we carefully restrict
ourselves to writing programs which we can
manage intellectually, where we fully under-
stand the totality of their implications.

1. INTELLECTUAL MANAGEABILITY
OF PROGRAMS

Our most important mental tool for coping
with complexity is abstraction. Therefore, a
complex problem should not be regarded
immediately in terms of computer instruc-
tions, bits, and ‘“logical words,” but rather
in terms and entities natural to the problem
itself, abstracted in some suitable sense. In
this process, an abstract program emerges,
performing specific operations on abstract
data, and formulated in some suitable nota-
tion—quite possibly natural language. The
operations are then considered as the con-
stituents of the program which are further
subjected to decomposition to the next
“lower” level of abstraction. This process of
refinement continues until a level is reached
that can be understood by a computer, be
it a high-level programming language,
ForTraN, or some machine code [5, 6].
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For the intellectual manageability, it is
crucial that the constituent operations at
each level of abstraction are connected ac-
cording to sufficiently simple, well under-
stood program schemas, and that each opera-
tion is described as a piece of program with
one starting point and a single terminating
point. This allows defining states of the
computation (P, @), i.e., relations among
the involved variables, and attaching them
to the starting and terminating points of
each operation (S). It is immaterial, at this
point, whether these states are defined by
rigorous mathematical formulas (Le.,, by
predicates of logical ealeulus) or by suffi-
ciently clear and informative sentences, or
by a combination of both. The important
point is that the programmer has the means
to gain clarity about the interface conditions
between the individual building blocks out
of which he composes his program [7].

Example

An example may clarify the issues at this
point. The reader should be aware that any
example that is sufficiently short to fit onto
a single page cannot be much more than a
metaphor, probably unconvincing to habit-
ual skeptics. The important thing is to
abstract from the example and to imagine
the same method being applied to large
programming problems.

Example 1: Sequentia! Merging

Given a set of n = 2% integer variables
gy -+ o, find a recive to permute their
values such that a; € a» € £ a, using
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the principle of sequential merging. Thus,
we are to sort under the assumption of
strictly sequential access. Briefly told, we
shall use the following algorithm:

1) Pick individual components a¥ and
merge them into ordered pairs, de-
positing them in a variable a‘®.

2) Pick the ordered pairs from a® and
merge them pairwise into ordered
quadruples, depositing them in a
variable a®.

3) Continue this game, each time dou-
bling the size of the merged subse-
quences, until a single sequence of
length n = 2~ is generated.

At the outset, we notice that two variables
a® and a® suffice, if the items are alter-
nately shuttled between them. We shall
introduce a single array variable A with 2n
components, such that a® is represented by
All] - An] and a® is represented by
Aln+1] - A[2n]. Each of these two con-
ceptually independent parts has two points
of sequential access, or read/write heads.
These are to be denoted by pairs of index
variables 7, j and k, [ respectively. We may
now visualize the sort process as a repeated
transfer under merging of tuples up and
down the array A.

The first version of our programis evidently
a repetition of the merge shuttle of p-
tuples, where each time around p is doubled
and the direction of the shuttle is changed.
As a consequence, we need two variables,
one to denote the tuple size, one to denote
the direction. We will call them p and up.
Note that each repetitive operation must
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contain a change of its (control) variables
within the loop, an initialization in front of
the loop, and a termination condition. We
easily convince ourselves of the correctness
of the following program:

up 1= true;p ;= 1; (3)
repeat 1: “initialize indices 7, 7, k, and
l?);

2: “merge p-tuples from - and
J-sequences into k- and
l-sequences’’;

up = —up;p = 2%p
untilp = n

Statement-1 is easily expressed in terms
of simple assignments depending on the
direction of the merge pass:

1: if up then (4)
beginz := 1,7 :=n;
k:=n+1;1l:= 2%
end
else

begink 1= 1;1:= n;
1 i=mn+1;7 = 2%
end

Statement-2 describes the repeated merg-
ing of p-tuples; we shall control the repeti-
tion by counting the number m of items
merged. The sources are designated by the
indices 7 and j; the destination alternates
between indices & and [. Instead of introduec-
ing a new variable standing alternately for
k and [, we use the simple solution of inter-
changing & and [ after each p-tuple merge,
and letting k& denote the destination index
at all times. Clearly, the increment of £ has
then to alternate between the values +1 and
—1; to denote the increment, we introduce
the auxiliary variable h. We can easily
convince ourselves that the following re-
finement is correct:

2: beginm :=n;h 1= 1; 5)
repeat m .= m—2+p;

3: “merge one p-tuple from
each of 7 and j to k, in-
crement k after each
move by 2”7, h 1= —h;

4: “exchange k and "

untilm = 0
end
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Whereas statement-4 is easily expressed
as a sequence of simple assignments, state-
ment-3 Involves more careful planning. It
describes the actual merge operation, i.e.,
the repeated comparison of the two incom-
ing items, the selection of the lesser one, and
the stepping up of the corresponding index.
In order to keep track of the number of
items taken from the two sources, we intro-
duce the two counter variables ¢ and r. It
must be noted that the merge always ex-
hausts only one of the two sources, and
leaves the other one nonempty, Therefore,
the leftover tail must subsequently be copied
onto the output sequence. These delibera-
tions quickly lead to the following desecrip-
tion of statement-3:

3: beging = p,r = p; (6)

repeat {select the smaller item)
if Alz] < Alj] then

begin Alk] 1 = Ald;
kot=kd-h;i=1+1;
g = g—1

end

else

begin A[k] 1= Alj];
ki=kth;ji=7—1;
roi=r—1

end
until (g = 0V (r = 0);
5: “copy tail of i-sequence’’;
6: “copy tail of j-sequence”
end
The manner in which the tail copying
operations are stated demands that they

be designed to have no effect, if initially "

their counter is zero. Use of a repetitive
construct testing for termination before the
first execution of the controled statement
is therefore mandatory.

5: while ¢ # 0 do (7
begin Alk] : = All;
k= k+h;

ii= 4159

fi

o

I
st

end

6. while r 5 0 do
begin Alk] : = A[j];
Ik = k+h;
ji=g—1ri=r—1
end
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This concludes the development and pres-
entation of this program, if a computer is
available to accept statements of this form,
i.e., if a suitable compiler is available.

In passing, I should like to stress that we
should not beled to infer that actual program
conception proceeds in such a well organized,
straightforward, “top-down’ manner. Later
refinement steps may often show that earlier
decisions are inappropriate and must be
reconsidered. But this neat, nested factoriza-
fton of a program serves admirably well to
keep the individual building blocks intellec-
tually manageable, to explain the program
to an audience and to oneself, to raise the
level of confidence in the program, and to
conduct informal, and even formal proofs of
correctness. The emerging modularity is
particularly welcome if programs have to be
adjusted to changed or extended specifica-
tions. This is a most essential advantage,
since in practice few programs remain con-
stant for a long time. The reader is urged to
rediscover this advantage by generalizing
this merge-sort program by allowing n to be
any integer greater than 1.

Example 2: Squares and Palindromes

List all integers between 1 and N whose
squares have a decimal representation which
18 a palindrome. (A palindrome is a sequence
of characters that reads the same from both
ends.)

The problem consists in finding sequences
of digits that satisfy two conditions: they
must be palindromes, and they must repre-
sent squares. Consequently, there are two
ways to proceed: either generate all palin-
dromes (with log N2 digits) and select those
which represent squares, or generate all
squares and then select those whose repre-
sentations are palindromes. We shall pursue
the second method, because squares are
simpler to generate (with conventional pro-
gramming facilities), and because for a given
N there are fewer squares than palindromes.
The first program draft then consists of es-
sentially a single repetitive statement.

n = 0 (8)
repeatn @ = n + 1; generate square;
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if decimal representation of square
is a palindrome
then write n
untiln = N

The next step is the decomposition of the
complicated, verbally described statements
into simpler parts. Obviously, before testing
for the palindrome property, the decimal
representation of the square must have been
computed. As an interface between the
individual parts we introduce auxiliary vari-
ables. They represent the result of one step
and function as the argument of the suc-
cessive step.

d[1] - - - d[L] an array of decimal digits

L the number of digits com-
puted

P a Boolean variable

(note that L = entier(2 log N) + 1)
The refined version of (8) becomes

n = 0; 9
repeatn = n-+1;s 1= n¥mn;

d : = decimal representation of s;

p = d is a palindrome;

if p then write (n)
untiln = N

and we can proceed to specify the three
component statements in even greater detail.
The computation of a decimal representa-
tion is naturally formulated as the repeated
computation of individual digits starting
“at the right”.

L:=0;
repeat L 1= L+1;
separate the rightmost digit of s,
call it d[L]
until s = 0

(10)

The separation of the least significant digit
is now easily expressed in terms of ele-
mentary arithmetic operations as shown in
(12). Hence, the next task is the decomposi-
tion of the computation of the palindrome
property p of d. It is plain that it also con-
sists of the repeated, sequential comparison
of corresponding digits. We start by picking
the first and the last digits, and then proceed
inwards. Let 7 and j be the indices of the
compared digits.
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ii=1;7:=L; (11)

repeat compare the digits;

ti=1+1;7:=7—1

until (z 2 j) or digits are unequal

A last refinement leads to a complete solu-
tion entirely expressed in terms of a conven-
tional programming language with adequate
structuring facilities.

ni=0; (12)
repeatn .= n+1;s:=nm;L = 0;

repeat L : = L+1;

ri= s div 10; d[L] := s — 10*r;
s:=7

until s = 0;

ti=1;7:=1;

repeat p : = d[i] = d[j];

Ti=14+41;):=jy-—1
antil (¢ 2 j) or —p;
if p then write (n)

untiln = N

This ends the presentation of Example 2.

2. SIMPLCITY OF COMPOSITION SCHEMES

In order to achieve intellectual manage-
ability, the elementary composition schemes
must be simple. We have encountered most
of the truly fundamental ones in this second
example. They encompass sequencing, con-
ditioning, and repetition of constituent state-
ments. I should like to elaborate on what is
meant by simplicity of composition scheme.
To this end, let us select as example the
repetitive scheme expressed as

while B do S (13)

It specifies the repeated execution of the
constituent statement S, while—at the
outset of each repetition—condition B is
satisfied. The simplicity consists in the ease
with which we can infer properties about the
while statement from known properties of
the constituent statement. In particular,
assume that we know that S leaves a prop-
erty P on its variables unchanged or invari-
ant whenever B is true initially; this may be
expressed formally as

PABIS P (14a)
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according to the notation introduced by
Hoare [8]. Then we may infer that the while
statement also leaves P invariant, regard-
less of the number of times S was repeated.
Since the repetition process terminates only
after condition B has become false, we may
infer that in addition to P, also =B holds
after the execution of the while statement.
This inference may be expressed formally as

P {while Bdo S} P A\ =B (14b)

This formula contains the essence of the
entire while-construct. It teaches us to look
for an invariant property P, and to consider
the result of the repetition to be the logical
combination of P and the negation of the
continuation condition B. A similar pattern
of inference governs the repeat-construct
used in the preceding examples. Assuming
that we can prove

Q V(PN —B)SIP (15a)
about S, then we may conclude that
Q {repeat S until B} PAB (15h)

holds for the repeat-construct.

There remains the question, whether all
programs can be expressed in terms of
hierarchical nestings of the few elementary
composition schemes mentioned. Although
in principle this is possible, the question is
rather, whether they can be expressed con-
veniently, and whether they should be ex-
pressed in such a manner. The answer must
necessarily be subjective, a matter of taste,
but I tend to answer affirmatively. At least
an attempt should be made to stick to ele-
mentary schemes before using more elab-
orate ones. Yet, the temptation to rescind
this rule is real, and the chance to succumb
is particularly great in languages offering a
facility like the goto statement, which allows
the instantaneous invention of any form of
composition, and which is the key to any
kind of structural irregularity.

The following short example illustrates a
typical situation, and the issues involved.

Example 3: Selecting Distinct Numbers

Given is a sequence of (not necessarily differ-
ent) numbers 7, 71, 13, - - - . Select the first n
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distinct numbers and assign them sequen-
tially to an array variable a with n elements,
skipping any number r; that had already
occurred. (The sequence r may, for instance,
be obtained from a pseudo-random number
generator, and we can rest assured that the
sequence r contains at least n different num-
bers.)

An obvious formulation of a program per-
forming this task is the following:

fori:= 1ltondeo (16)
begin L: get(r);
forj:= 1ltoi—1do
if a[j] = 7 then goto L;

alt] 1= 1r
end

It cannot be denied that this “obvious”
solution has been suggested by the tradition
of expressing a repeated action by a for
statement (or a DO loop). The task of com-
puting a value for a is decomposed into n
identical steps of computing a single number
aft] for 7 = 1 -+ n. Another influence lead-
ing to this formulation is the tacit assump-
tion that the probability of two elements of
the sequence being equal is reasonably small.
Hence, the case of a candidate » being equal
to some afj] is considered as the exception:
it leads to a break in the orderly course of
operations and is expressed by a jump. The
elimination of this break is the subject of
our further deliberations.

Of course, the goto statement may be
easily—almost mechanically—replaced in a
transeription process leading to the follow-
ing gnto-less version.

for7:=1tondo (17)
begin
repeat get(r); ok = true;
ji=1
while (j <7) /A ok do
begin ok 1= a[j]& r;j 1= j+1
end
until ok;
altl] 1=r

end

The transcription consists of the replace-
ment of the for statement with a fixed
termination condition depending on the
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running index j by a more flexible while
statement allowing for more complicated,
composite termination (or rather continua-
tion) conditions. But this solution appears
quite unattractive. It is admittedly less
transparent than the program using a jump,
in spite of the fact that the most frequently
heard objection to the use of jumps is that
they obscure the program. The other objec-
tion is that the goto-less version (17) re-
quires more comparisons and tests, and
hence is less efficient.

The crux of the matter is that well-struc-
tured programs should not be obtained
merely through the formalistic process of
eliminating goto statements from programs
that were conceived with that facility in
mind, but that they must emerge from =z
proper design process. Two alternative solu-
tions are presented here as illustrations.

In the first case, we abandon the notion
that the program must necessarily be based
on the statement

forv:= 1tondo (18)

al?] = the next suitable number

and consider the basic iteration step to
consist of the generation of the next ele-
ment of the sequence r, followed by the test
for its acceptability.

1= 1; (19)
while 7 < n do
begin generate next r;

assign it to afz];

check whether all a[j] are different

from a[z];

if so, proceed by incrementing ¢

end

This form makes it obvious that we are in
trouble, if the sequence r should be such that
7 cannot be incremented any longer. Written
In terms of our programming language, (19)
becomes

1= 1; 20)
while ¢ < ndo
begin get(r);
ald] t=r;j 1= 1;
while a[j] # rdoj = j+1;
ifz = jthen?:={7+1
end

The second approach to this problem re-
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" tains the basic concept of the solution as

shown in (18). From there, its development
is characterized by the following two snap-
shots: ‘

for7:=1tonde 21)

repeat generate the next r;

check its acceptability

until acceptable

for?:= 1tondo (22)
repeat get(r);
ali] 1= r;j 1= 1;
while a[j] # rdo j := j+1;
until { = j
In contrast to (20), this solution consists

of three nested repetitions instead of only
two, and therefore seems inferior at first
sight. In fact, however, solution (22) turns
out to be even more economical. The reason
is that in (20) the test for continuation 1< n
is actually unnecessary whenever 157, since
17 in this case implies 7 <j, and because ¢
has not been altered since the last evalua-
tion of 7<n. Of course, program (22) is
considerably more efficient than the original
form with a jump (16).
This terminates our consideration of Ex-
ample 3.
The question remains open, of course,
whether jumps can always be avoided with-
out disadvantage. I shall not venture to
answer this question, particularly because
the term “disadvantage” is sufficiently vague
to admit many interpretations. But there is
evidence of the existence of some characteris-
tic and reasonably frequent situations which
are expressed only with difficulty in terms
of the language construet introduced above.
A particular case is the loop with exit(s) in
the middle. Lately it has led language de-
signers to introduce specific constructs
mirroring this case [12]. It turns out, how-
ever, that it is most difficult to find a satis-
factory and linguistically suggestive formula-
tion, and that sometimes solutions are in-
vented that seem to merely replace the
symbol goto by another word, such as exit
or jump. Ior example, the construct

loop S1; (23)
exit if P;
52
end
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with the parametric statements S1, 82, and
the termination condition P might be
adopted to express the program

L1: begin S1; (24)
if P then goto L2;
S2; goto L1

12: end

in a more concise and goto-free form.
Expressing (24) in terms of the basic
repetitive statement forms does, indeed,
often lead to undesirable complications, such
as unnecessary reevaluation of conditions,
or duplication of parts of the program, as is
shown by the two proposals (25) and (26).

repeat S1; (25)
if - P then 52

until P

S1; (26)

while - P do
begin S2; S1 end

LOOP STRUCTURES

The following, and last two, examples of
problems are added to show that often the
need for an exit in the maiddle construct
is based on a preconcelved notion rather
than on a real necessity, and that sometimes
an even better solution is found when stick-
ing to the fundamental constructs.

Example 4: A Scanner

The task is to construct a piece of program
which, each time it is activated, scans an
input sequence of characters, delivering as
result the next character, but skipping over
blanks and over so-called comments. A
comment is defined as any sequence of char-
acters starting with a left bracket and end-
ing with a right bracket.

This scanner could typically occur as part
of a compiler. A common solution is indi-
cated by the following flowchart (next de-
notes the operation of reading the next
character and assigning it to the result vari-

able z).

(27)

.
next x = "J>
e

This program clearly exhibits the loop
structure with exit in the middle, satisfying
the one-entry-one-exit prerequisite. Instead
of proposing a suggestive form for this con-
gtruct in sequential language, however, let
me tackle the posed problem in a different
manner. Recognizing the main purpose of
the program as being the reading of the
next character, with the additional request
for skipping over blanks and comments, I
propose a first version as follows:

next; (28)
while z in {0, '{’] do
“skip blanks and comments”

The correctness of this program is easily
established, assuming that the statement in
quotes performs what it says, and nothing
more. The definition of the while statement
guarantees that the resulting value of z is
neither a blank nor a comment, no matter in
what way blanks and comments are skipped.

The refinement of the statement in quotes
is guided by the fact that upon its initiation
z is either a blank or an opening bracket.

ifx = 'Lt then next else (29)
“skip comment”

where the last statement is expressed, with
obvious reasoning, as

begin repeat next until z = '}’; (30)
next
end

Only knowledge about the expected fre-
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quencies of occurrence of individual characters
can be a reason to choose another form of
this program on the grounds of efficiency.
For the sake of argument, let us assume that
short sequences of blanks are particularly
frequent and that, on the other hand, im-
mediately adjacent comments are extremely
rare. This leads us to an equally correct al-
ternative form of (29), namely

“skip consecutive blanks, if any”; (31)

“skip comment, if any”

The first of the two statements is readily ex-
pressed as

while z = (4’ do neat (32)

whereas the second is already elaborated in
(30).

Example 5: Integer Multiplication

Assume that we are to design a program to
multiply two non-negative integers a and b
with the use of addition, doubling, and
halving only. Let the result be represented
by a variable 2. A well-known and efficient,
method is shown by the following flowchart:

(3%

This program, once again, clearly exhibits
the loop structure with exit in the middle,
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and therefore cannot be expressed as a single
while statement. It is usually squeezed into
the simple loop form by displacing the loop
termination test, positioning it in front of
statement S1. The program then obtains
the well-known form

1= 0 (34)

ri=a;y :="b;z
while y = 0 do

begin if odd(y) then

beginy := y—1,2 1= 24z
end;
yi=ydiv2;z = 2%z

end

This clearly does not change the effect of
the program, because if ¥y = 0 at entry to S1,
then S1 has no effect and, in particular,
leaves y unchanged; and if y ¢ 0, then the
only additional effect incurred by the modi-
fied version is on the auxiliary variables z
and y in the case of y = 1. But this additional
effect is quite undesirable, not so much
because of the additional, superfluous, and
useless computation, but because this opera-
tion may be harmful by causing overflow of
the arithmetic unit. Should we therefore
resort to the exit-in-the-middle version?

A different solution was shown to me by
E. W. Dijkstra. He proposed to tackle the
problem at its roots, instead of trying to
remedy a preconceived proposal. The most
obvious multiplication algorithm under the
stated constraints is the following:

zi=a;y:=b;z:=0; (35)
while y = 0 do
begin {y > 0 and z*y+2z =
yi=y—1;2:=z+zx
end

axb}

Before we start out trying to improve this
version, we observe that at the outset of each
repetition two conditions are satisfied,

1. y > 0 follows from the fact that y is a
non-negative integer and not equal to
zero.

2. x%y+2z = axb is invariant under the
two repeated assignments. (To verify
this claim, substitute y —1 for y and 242
for z; this yields zx(y—1)+(z+2) =
2¥y-+2 = a%b, i.e., the original equa-
tion.) At entry the equation is satis-
fied, sincez = 0,z = @,y = b.
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Note that the invariant equation combined
with the negation of the continuation con-
dition yields (y = 0) and (z*y+2z = a*b),
i.e., the desired result z = axb.

If we now insert any statement at the
place of the invariant which leaves the prod-
uct zxy unchanged, the result of the pro-
gram will evidently remain the same. Such
a statement is, e.g., the pair of assignments

y:i=ydiv2;z = 2%z (36)

Under the condition that y is even. But if a
relation 1s invariant over a statement, it re-
mains so regardless of how often the state-
ment is executed. This suggests the follow-
ing, quite evidently correct, efficient, and
elegant solution. It contains no exit-in-the-
middle loop.

zi=a;y:=b;z:= 0 (37)
while y = 0 do
begin {y > 0 and z*y+2z = a*b}
while even(y) do
begin y : = ydiv 2;z | = 2xz
end;
yi=y—1;2:= 24z
end

So much for examples, whose purpose was
to sketch and elucidate the basic ideas be-
hind the methods of structured programming
and stepwise refinement,

CONCLUSIONS

Skeptics will, of course, doubt that these
methods represent any progress over the
techniques of the old days—in fact, that
they are methods at all. T can merely say that
in my own experience, the new approach has
improved my attitudes and abilities towards
programming very considerably, and the
experiences of others confirm this impression
[10, 11]. A systematic, orderly, and trans-
parent approach is mandatory in any sizable
project nowadays, not only to make it work
properly, but also to keep the programming
cost within reasonable bounds. It is the
very fact that computation has become very
cheap in contrast with salaries of program-
mers, that squeezing the machines to yield
their utmost in speed has become much less

important than reliability, correctness, and
organizational clarity. It is not only more
urgent, but also much more costly to correct
an efficient, but erroneous program, than to
speed up a relatively slow, but correct pro-
gram. In the past, the debugging phase has
taken a ridiculously large percentage of the
development cost in most large projects. The
alm now is to eliminate the necessity of de-
bugging by creating bug-free products in the
first place. Doesn’t this bring to mind the
medical slogan “prevention is better than
healing”’!

The criticism has been voiced that the
method of structured programming is in
essence nothing more than programming by
painstakingly avoiding the use of jumps
(goto statements). One may, indeed, come
to this conclusion by looking at the entire
issue in the reverse direction. But in faet,
the method of stepwise decomposition and
refinement of the programming task auto-
matically leads to goto-free programs; the
absence of jumps is not the initial aim, but
the final outcome of the exercise. The claim
that structured programming was invented
by proving that all programs can be formu-
lated without goto statements is therefore
based on a fundamental misunderstanding.

The question of whether jumps enter the
picture or not is basically a matter of the
level of decomposition or refinement to which
the programming process is carried. Ulti-
mately—that is in machine code—there can
be no doubt about the presence of jump
instructions. The moral of the story is that
jumps must not be used in theinitial concep-
tion of a general algorithmic strategy, and
in fact should be delayed as long as possible.
With today’s state of technology, the intro-
duction of jump instructions can be left to
compilers of languages that offer adequate,
judiciously chosen, disciplined structuring
facilities.

One of the essential facilities for this pur-
pose, besides conditional and repetitive
statements, is the recursive procedure. In
many cases it emerges as the natural formu-
lation of a solution, such as, for instance, in
most cases of backtracking algorithms.
Hardly anywhere else can a natural, concise,
and often self-explanatory solution be made
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more obscure and mystifying than by replac-
ing its recursive formulation by one in terms
of repetition and—well—jumps. This process
should definitely be left to a compiler, as 1t
concerns what is called coding rather than
programming. (code = system of symbols
used in ciphers, secret messages, etc. [Web-
ster].) Modern programming systems, how-
ever, offer efficient implementations of re-
cursion, and thereby make “programming
around recursion’” a largely unnecessary
exercise.

Whereas a teacher should not and must
not pay attention to “percent issues’ as to
efficiency while explaining and exemplifying
methods of composing well-structured pro-
grams, a professional programmer may well
be forced to do so. He may sometimes find a
dogma of sticking exclusively to a restricted
set of program structuring sehemas too much
of a straight-jacket, and the temptation to
break out too powerful. This will be the case
as long as compilers are insufficiently sophis-
ticated to take full advantage of disciplined
structuring. Naturally, there will always be
situations where a compiler is either denied
the full information needed for successful
code optimization, or where it would bhe un-
able to infer the necessary conditions. It 1s
therefore entirely possible that in the future
a more interactive mode of operation be-
tween compiler and programmer will emerge,
at least for the very sophisticated profes-
sional. The purpose of this interaction would
not, however, be the development of an
algorithm or the debugging of a program, but
rather its improvement under invariance of
correctness.

The foregoing discussion also implies an
answer to the question of whether structured
programming in an unstruetured language
(such as FORTRAN) is possible. 1t is not.
What is possible, however, is structured
programming in a ‘higher level” language
and subsequent hand-translation into the un-
structured language. The corollary is that
whereas this approach may be practicable
with the almost superhuman discipline of a
compiler, it is highly unsuited for teaching
programming. Recognizing that there may
be valid economic reasons for learning coding
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in, say, FORTRAN, the use of an unstructured
language to teach programming—as the art
of systematically developing algorithms-—-
can no longer be defended in the context of
computer science education. The lack of an
adequate modern tool on the available com-
puting facility is the only reraining exeuse.

The last remark concerns an aspect of
“structured programming’’ that has not
been illuminated by the foregoing examples:
structuring considerations of program and
data are often closely related. Hence,itisonly
natural to subject also the specification of
data to a process of stepwise refinement.
Moreover, this process is naturally carried
out simultaneously with the refinement of
the program. A language must, therefore,
not only offer program structuring facilities,
but an adequate set of systematic data
structuring facilities as well. An example of
this direction of language development is the
programming language PASCAL 112, 13]. The
importance of this aspect of programming is
particularly evident, as we recognize the
data as the ultimate object of our interest:
they represent the arguments and results of
all computing processes. Onuly structure
enables the programmer to recognize mean-
ing in the computed information.
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