
The RISC Architecture NW 5.12.10, rev. 9.8.2018

0. Resources and registers

From the viewpoints of the programmer and the compiler designer the computer consists of an arithmetic
unit, a control unit and a store. The arithmetic unit contains 16 registers R0 – R15, with 32 bits each. The
control unit consists of the instruction register IR, holding the instruction currently being executed, and the
program counter PC, holding the word-address of the instruction to be fetched next. All branch instructions
are conditional. The memory consists of 32-bit words, and it is byte-addressed. Furthermore, there are 4 flag
registers N, Z, C and V, called the condition codes.

There are four types of instructions and instruction formats. Register instructions operate on registers only
and feed data through a shifter or the arithmetic logic unit ALU. Memory instructions fetch and store data in
memory. Branch instructions affect the program counter.

1. Register instructions (formats F0 and F1)

Register instructions assign the result of an operation to the destination register R.a. The first operand is the
register R.b. The second operand n is either register R.c or is the constant im.

0 MOV a, n R.a := n

1 LSL a, b, n R.a := R.b ← n (shift left by n bits)
2 ASR a, b, n R.a := R.b n (shift right by n bits with sign extension)
3 ROR a, b, n R.a := R.b rot n (rotate right by n bits)

4 AND a, b, n R.a := R.b & n logical operations

5 ANN a, b, n R.a := R.b & ~n

6 IOR a, b, n R.a := R.b or n

7 XOR a, b, n R.a := R.b xor n

8 ADD a, b, n R.a := R.b + n integer arithmetic

9 SUB a, b, n R.a := R.b – n

10 MUL a, b, n R.a := R.a х n
11 DIV a, b, n R.a := R.b div n

12 FAD a, b, c R.a := R.b + R.c floating-point arithmetic

13 FSB a, b, c R.a := R.b – R.c

14 FML a, b, c R.a := R.a х R.c
15 FDV a, b, c R.a := R.b / R.c

Immediate values are extended to 32 bits with 16 v-bits to the left. Apart from R.a these instructions also
affect the flag registers N (negative) and Z (zero). The ADD and SUB instructions also set the flags C (carry,
borrow) and V (overflow).

2. Memory instructions (format F2)

LD a, b, im R.a := Mem[R.b + off] u = 0

ST a, b, im Mem[R.b + off] := R.a u = 1

If v = 0, access is for a word (4 bytes). If v = 1, a single byte is accessed.

00u0 a b op cF0

F1 01uv a b imop

4 4 4 4 412

16

F2 10uv a b off

4 4 4 20

3. Branch instructions (Format F3)

Bcond dest

If u = 0, the destination address is taken from register R.c. If u = 1, it is PC+1 + offset. If v = 1, the link
address PC+1 is deposited in register R15.

code cond condition code cond condition

0000 MI negative (minus) N 1000 PL positive (plus) ~N
0001 EQ equal (zero) Z 1001 NE positive (plus) ~Z
0010 CS carry set (lower) C 1010 CC carry clear ~C
0011 VS overflow set V 1011 VC overflow clear ~V
0100 LS lower or same ~C|Z 1100 HI higher ~(~C}Z)
0101 LT less than NV 1101 GE greater or equal ~(NV)
0110 LE less or equal (NV)|Z 1110 GT greater than ~((NV)|Z)
0111 always true 1111 never false

4. Special features

Modifier bit u = 1 changes the effect of certain instructions as follows:

 ADD', SUB' add, subtract also carry C
 MUL' unsigned multiplication
 MOV' form 0, v = 0: R.a := H
 MOV' form 0, v = 1: R.a := [N, Z, C, V]
 MOV' form 1 R.a := [imm 16'b0] (imm left shifted 16 bits)

The MUL instruction deposits the high 32 bits of the product in the auxiliary register H. The DIV instruction
deposits the remainder in H.

5. Interrupts

The addition of an interrupt facility required the addition of two new instruction, as well as the status register
intenb (interrupt enable). The instructions are

RTI 1100 0111 xxxx xxxx xxxx xxxx 0001 Rn return from interrupt
STI/CLI 1100 1111 xxxx xxxx xxxx xxxx 0010 000e set / clear interrupt, intenb := e

These instructions are encoded as branch instructions with bits 4 or 5 set.

110v cond c

4 4 4

F3 111v cond off

0000110v cond

416

The RISC0 implementation

The RISC architecture has been implemented on a Xilinx FPGA contained on the development board
Spartan. RISC0 stands at the origin of an evolving series of extensions. It represents a Harvard architecture,
and it uses FPGA-internal RAM for its memory, which is restricted to 8K words of program and 8K words for
data. It does not feature byte access, and the floating-point instructions are not available..

RISC0's external devices are the following:

adr hex input output

-64 0FFFC0H millisecond counter
-60 0FFFC4H switches LEDs
-56 0FFFC8H RS-232 data RS-232 data
-52 0FFFCCH RS-232 status* RS-232 control

* bit 0: receiver ready, bit 1: transmitter ready

The RISC5 implementation

RISC5 is an extension of RISC0 based on a von Neumann architecture and uses the same instruction set.
The memory consists of the board-internal SRAM with a capacity of 1 MB. Byte access is available, and so
are floating-point instructions.

RISC5's external devices are the following:

adr hex input output

-64 0FFFC0H millisecond counter
-60 0FFFC4H switches LEDs
-56 0FFFC8H RS-232 data RS-232 data
-52 0FFFCCH RS-232 status RS-232 control
-48 0FFFD0H disk, net SPI data SPI data
-44 0FFFD4H disk, net SPI status SPI control
-40 0FFFD8H keyboard data (PS2)
-36 0FFFDCH mouse (and kbd status)

A further added device is the video controller. It maps memory at 0E7F00H - 0FFEFFH onto the display
(1024 x 768 pixels).

