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A Note on Division 
Niklaus Wirth – 20.8.2008 / 1.10.2008 

1. Introduction 
Early computers had neither multiplication nor division in their instruction sets. These operations 
required too many latches and gates, and could well be implemented in software using addition, 
subtraction, and shifting. As computers became more potent, instructions for multiplication and 
division became expected ingredients. 

With the advent of RISCs, the question of whether these two operations had justifiable places in 
the instruction set, became reanimated. After all, execution of every instruction in a single clock 
cycle was the fundamental premise in RISC design, and neither multiplication nor division could 
perform that fast without a disproportionate amount of circuitry. Moreover, it had become 
apparent that multiplication was relatively rarely needed, and division almost never. Therefore, 
their speed was a secondary issue. The well-known RISCs of the 1990s, such as MIPS and 
SPARC had them excluded and replaced with multiply-step and divide-step instructions. 32 of 
them in sequence provided a full multiplication or division. 

We will discuss the question of how to best provide division on a computer lacking such an 
instruction. This is the case for the ARM, on which our tests were peformed. 

2. Integer Division 
Integer division can be done by the conventional algorithm using repeated subtraction and 
shifting by a single digit. First the divisor y is shifted left until it is larger than the dividend x. Let q 
be the quotient and r the remainder. We assume 0 ≤ y < x. Note that multiplication by 2 is a left 
shift by 1 digit, and division by 2 by a right shift. With the precondition 0 < y ≤ x, the result 
satisfies  q*y + r = x and 0 ≤ r < y. 

r := x; q := 0; y0 := y; 
REPEAT y := 2*y UNTIL y > x; 
REPEAT y := y DIV 2; q := 2*q; 
 IF r >= y THEN r := r - y; q := q+1 END 
UNTIL y = y0; 

Typically, however, a version of this algorithm is chosen that uses a double length register rq 
holding both remainder and quotient. The number of steps is always equal to the word length N. 
(Y is y added to the upper half of rq). 

rq := x; i := N; 
REPEAT rq := 2*rq; i := i-1; 
 IF r >= y THEN rq := rq - Y; q := q+1 END 
UNTIL i = 0; 

This version is shorter and therefore also faster than the first. It is used by the Oberon-ARM 
compiler producing in-line code. Then I recognized that for small quotients the fixed number of 
steps is a handicap, and the first version is definitely superior. How much? The following results 
show when and how much the first version is superior, although its code is 4 instructions longer. 
The time shown is for 10000 divisions by 3. 

dividend quotient time in ms 

        10         3  160 
       100        33  320 
      1000       333  438 
     10000      3333  558 
    100000     33333  716 
   1000000    333333  836 
  10000000   3333333  955 
 100000000  33333333 1075 



 2

1000000000 333333333 1234 
2147483647 715827882 1274 

The second algorithm with a fixed number of steps uses 925 ms independent of the value of the 
quotient. 

The code generated by the compiler for the ARM for the first version is the following. with 
variables x, y, y0, q, r in registers R11 … R7: 

   3  E1A0700B MOV  R7 R0 R11 
   4  E3A08000 MOV  R8 R0 0 
   5  E1A0A009 MOV  R10 R0 R9 
   6  E1B0A08A MOV  R10 R0 R10 LSL  1 
   7  E15A000B CMP  R0 R10 R11 
   8  DAFFFFFC BLE       -2 
   9  E1B0A0CA MOV  R10 R0 R10 ASR  1 
  10  E1B08088 MOV  R8 R0 R8 LSL  1 
  11  E157000A CMP  R0 R7 R10 
  12  BA000001 BLT        3 
  13  E057700A SUB  R7 R7 R10 
  14  E2988001 ADD  R8 R8 1 
  15  E15A0009 CMP  R0 R10 R9 
  16  1AFFFFF7 BNE       -7 

The code becomes somewhat longer, if also negative dividends are admitted: 
r := ABS(x); q := 0; y0 := y; 
………………… 
IF x < 0 THEN q := -q; 
 IF r # 0 THEN r := y - r; q := q-1 END 
END 

3. Real Division 
Real numbers are represented in IEEE floating-point form, i.e. as 

x  =  1.m × 2e+B 1.0 ≤ m < 2.0 0 < e < 255 

m is called the mantissa and e the exponent. B = 127 for single and B = 1023 for double 
precision. A division z = x/y is computed by division of the mantissas and subtraction of the 
exponents. 

x = 0.5 3F000000 (sign, 8-bit exponent, 23-bit mantissa) 
x = 1.0 3F800000 
x = 2.0 40000000 
x = 3.0 40400000 

Real division is therefore typically implemented by using the algorithm of integer arithmetic for the 
mantissas. In this case, the version using a fixed number of 24 steps is employed. Recip(x) = 1/x. 

PROCEDURE* Recip(a: REAL): REAL; (*0.5 <= a < 1.0*) 
 VAR x, y, q, i: INTEGER; 
BEGIN y := SYSTEM.VAL(INTEGER, a) MOD 800000H + 800000H; 
 x := 1000000H; i := 24; q := 0; 
 REPEAT q := 2*q; 
  IF x >= y THEN x := x - y; INC(q) END ; 
  x := 2*x; DEC(i) 
 UNTIL i = 0; 
 RETURN SYSTEM.VAL(REAL, q MOD 800000H + 3F800001H) 
END Recip; 

Note: The assignments involving the type cast (SYSTEM.VAL) yield the mantissa of a represented as an integer, and the 
real result composed of an exponent and the mantissa q.  

The alternative for computing y = 1/x is to use an iterative approximation using multiplication. 
There exist various methods. Best known is the one after Newton and Raphson. For the general 
case y = f(x) with x = a it is based on computing a root of the inverse function f-1 – a. 

With f(x) = f-1(x) = 1/x = x-1, f’(x) = -x-2, we obtain the recurrence relation 
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xi+1  =  xi – ((xi
-1 – a) / -xi

-2)  =  xi + (xi – a*xi
2)  =  xi*(2 – a*xi) 

Hence, every iteration requires two multiplications. Whether this method can compete with the 
traditional integer method depends on the number of iterations required and on the speed of 
multiplication. Some modern processors indeed perform multiplication very fast. It appears 
counterintuitive that multiplication would be (almost) as fast as addition, out of which it is 
composed. However, this speed is achieved at the cost of a very substantial amount of circuitry, 
which all works in parallel. 

The determination of the appropriate starting value x0 requires additional effort, and the chances 
of the Newton method diminish. With an auxiliary variable z = a*x we obtain 

x := x0; z := a*x; 
REPEAT x := x * (2.0 – z); z := a*x UNTIL z # 1.0 

The following test samples indicate the number n of required iterations. 

a x n 
0.5 2.0 7 
0.8 1.25 5 
0.95 1.0526316 4 

Fortunately, a more effective algorithm is available, as represented by the following iteration with 
0.5 ≤ a < 1. The repetition is based on the invariant a*x = 1 – z and   0 ≤ z ≤ 0.5. A definite 
advantage is that it is unnecessary to select an initial value for x and that z converges 
quadratically to zero: 

x := 1.0; z := 1.0 - a; 
REPEAT x := x*(1.0+z); z := z*z UNTIL z = 0.0 

The following test samples indicate the number n of required iterations. 

a x n 
0.5 2.0 5 
0.8 1.25 4 
0.95 1.0526316 3 

The key for an efficient implementation is to use integer arithmetic, even if floating-point addition 
and multiplication were available. Fractional numbers are represented in fixed-point form. This is 
particularly appropriate in this case, because x and z vary within the known intervals 0,5 ≤ a < 1.0 
and 1.0 < x ≤ 2.0. 

PROCEDURE* Recip(a: REAL): REAL; (*0.5 <= a < 1.0*) 
 VAR x, z, z1, ph, pl: INTEGER; 
BEGIN x := 80000000H; (*1.0*) 
 z := SYSTEM.VAL(INTEGER, a) MOD 800000H + 800000H; 
 z := LSL(1000000H - z, 8); 
 REPEAT 
  SYSTEM.MULD(pl, x, z); x := ph + x; 
  SYSTEM.MULD(pl, z, z); z := ph; 
 UNTIL z < 100H; 
 RETURN SYSTEM.VAL(REAL, LSR(LSL(x, 1), 9) + 3F800001H) 
END Recip; 

Note: MULD(p, x, y) denotes ph,pl := x*y. 

The binary point is chosen to lie to the left of bit 30 for x, and to the left of bit 31 for z. This choice 
makes it unnecessary to adjust (shift) the resulting products. Furthermore, the expression x := x*z 
+ x is used instead of x := x*(1.0+z), thereby avoiding the sum 1.0+z reaching or exceeding the 
value 1.0. 

A comparison between the two methods yields the following, somewhat surprising times in ms: 

divisions shift-subtract iterative 
  100  10  2 
 1000  92 20 
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 4000 369 79 

The iterative method is in the average about 5 times faster than the shift-subtract method with a 
fixed number of 24 steps. (For 1000 divisions, the time varies depending on the divisor from 18 to 
22). 

The code generated by the compiler is: 
   3  E3A0A102 MOV  R10 R0 80000000H 
   4  E1A0548B MOV  R5 R0 R11 LSL  9 
   5  E1B054A5 MOV  R5 R0 R5 LSR  9 
   6  E2959502 ADD  R9 R5  800000H 
   7  E2795401 RSB  R5 R9 1000000H 
   8  E1B09405 MOV  R9 R0 R5 LSL  8 
   9  E0876A99 MUL  R7 R6 R10 R9 
  10  E097A00A ADD  R10 R7 R10 
  11  E0876999 MUL  R7 R6 R9 R9 
  12  E1A09007 MOV  R9 R0 R7 
  13  E3595C01 CMP  R5 R9 256 
  14  AAFFFFF9 BGE       -5 
  15  E1B0508A MOV  R5 R0 R10 LSL  1 
  16  E1B054A5 MOV  R5 R0 R5 LSR  9 
  17  E59F4008 LDR  R4 PC 8 
  18  E095B004 ADD  R11 R5 R4 

4. Conclusions 
It appears that integer division is best computed by the well-known shift-subtract method. 
However, this holds only if contrary to conventional habit not a fixed number of steps given by the 
word length, but only as many as required are performed. The method is therefore fast for the 
frequent case of small quotients.  

For division of REAL numbers, an iterative method using integer multiplication is recommended, if 
a fast multiply instruction is available. In this case, fixed-point arithmetic is mandatory. 


