Email: Miguel.Soto@Guardvant.Com
To tackle the framework usability issues, this thesis research proposes the use of a new framework, which formalizes the task of creating artificial cerebellums and offers a list of simple steps to accomplish this task. Furthermore, to tackle the building blocks incompatibility issues, this research proposes thinking of artificial cerebellums as a set of cooperating q-learning agents, which utilize a new technique called Moving Prototypes to make better use of the available memory and computational resources. Furthermore, this work describes a set of general guidelines that can be applied to accelerate the training of this type of system.
Simulation is used to show examples of the performance improvements resulting from the use of these guidelines. To illustrate the theory developed in this dissertation, this paper implements a cerebellum for a real life application, namely, a cerebellum capable of controlling a type of mining equipment called front-end loader.
Finally, this thesis proposes the creation of a development tool based on this formalization. This research argues that such a development tool would allow engineers, scientists and technicians to quickly build customized cerebellums for a wide range of applications without the need of becoming experts on the area of Artificial Intelligence, Neuroscience or Machine Learning.
Interested in reading the
entire thesis?
(206 pages, 2,449,408 bytes, pdf)
Interested in viewing the
Powerpoint presentation?