We can ask Darwin to produce a Dayhoff matrix for a specific PAM distance or specific range of PAM distances via the CreateDayMatrix function and the global variable logPAM1.
logmat | : | array(real, real) |
pam | : | real>0 |
r=r1..r2 | : | range,
![]() |
Returns: DayMatrix or array(DayMatrix)
Synposis: This function computes a similarity matrix (enhanced
Dayhoff) from the logarithmic mutation matrix logPAM1 and a
specified PAM value or range of PAM values..
These matrices are equivalent to those produced by the CreateDayMatrices function.
> p55 := CreateDayMatrix(logPAM1, 55);
The variable logPAM1 deserves some attention. The entries of
this matrix are the logarithm of a 1-PAM mutation matrix. It
is particularly economical to compute k-PAM mutation
matrices from this transformed matrix as we need only compute
We use this to compute a 55-PAM similarity matrix.
> PrintMatrix( 10000*logPAM1, '%4d' ); -110 5 5 6 12 9 11 12 5 2 5 6 9 2 10 30 14 1 4 -93 5 2 2 16 4 3 8 1 2 30 2 0 3 5 5 4 3 4-112 18 2 8 5 6 13 1 1 10 1 1 2 13 8 1 4 2 22 -95 0 7 28 5 6 0 0 5 0 0 3 7 5 0 3 1 1 0 -55 0 0 1 1 1 1 0 1 1 0 3 1 1 4 11 7 5 1-145 18 2 14 1 3 15 6 1 4 5 5 1 8 5 6 31 0 28-111 2 7 1 1 15 3 0 4 7 5 1 11 4 9 7 2 4 3 -48 3 0 1 3 1 0 2 10 2 2 1 4 7 3 1 9 3 1-106 1 1 3 2 2 1 2 3 1 2 1 2 0 2 2 1 0 2-122 22 2 27 7 1 1 5 2 6 4 2 0 3 8 2 1 3 36 -82 3 49 22 4 3 4 5 5 33 13 5 0 23 15 2 8 2 2-118 5 1 4 6 9 1 3 1 1 0 2 4 1 0 2 10 12 2-142 5 0 2 3 1 1 0 1 0 3 1 0 0 4 5 10 0 9 -78 0 1 1 10 6 2 2 2 0 5 3 1 2 1 2 3 0 1 -58 6 5 0 23 5 17 8 9 9 7 8 6 1 2 7 4 1 8-139 33 2 11 5 11 6 4 8 5 2 7 6 2 9 7 2 7 33-122 1 0 1 0 0 1 1 0 0 1 0 1 0 1 3 0 0 0 -44 1 2 2 1 3 1 1 0 13 1 2 1 2 22 1 2 1 10 15 2 1 0 8 3 4 1 2 51 14 3 12 5 2 3 14 1
> M55 := exp( 55*logPAM1 ): > PrintMatrix( 1000*M55, '%4d' ); 560 25 26 28 49 37 42 48 23 19 22 29 35 13 43 93 56 7 17 612 24 13 10 57 23 14 33 7 10 99 11 4 14 22 21 16 15 20 550 63 9 32 25 23 47 6 5 36 8 6 10 43 31 4 19 13 74 606 4 33 94 22 27 3 2 24 4 2 15 30 24 2 12 3 4 1 742 2 1 3 5 4 4 1 6 6 1 11 6 5 18 40 26 23 4 463 56 10 45 6 12 47 20 5 17 21 19 7 31 25 32 102 4 87 560 14 30 7 7 53 12 3 19 29 23 4 45 20 38 30 13 19 17 772 15 3 4 16 7 3 14 40 15 8 7 15 24 12 6 28 12 5 564 4 4 14 7 10 6 10 10 6 14 8 8 3 11 10 7 2 9 538 80 11 88 31 7 9 23 9 26 18 10 4 18 30 11 5 18 130 658 18 162 88 18 15 21 25 22 109 46 27 5 74 53 13 35 11 11 541 20 5 19 28 33 5 10 5 4 2 7 12 5 2 7 34 39 8 466 20 2 7 10 6 7 3 5 2 12 6 2 2 17 22 38 3 35 663 3 5 7 46 25 12 10 12 3 20 15 8 12 5 9 14 5 3 731 26 22 2 72 24 57 34 34 34 30 33 26 10 9 29 18 7 34 486 96 8 44 25 42 27 21 32 25 12 27 25 14 35 28 10 30 98 526 5 1 4 1 0 4 2 1 1 4 2 3 1 3 15 1 2 1 785 5 8 10 5 12 7 4 2 45 8 10 6 10 83 4 9 6 43 51 12 9 5 33 15 16 6 10 156 58 14 54 24 13 18 47 7