Sei
Im Prinzip könnte man zu allen in Tabelle 3.3
aufgelisteten skalaren Funktionen eine entsprechende Matrixfunktion
definieren (Algorithmus von Parlett basierend auf der
Schurzerlegung [7, p.384]). Dies wurde in MATLAB ausser für den
Logarithmus, die Exponential- und Wurzelfunktion nicht gemacht.
Funktionen wie exp, log, cos, sin, cosh, sinh können mit durch
funm(a,@sin), etc. aufgerufen werden. funm kann auch
für eigene Funktionen gebraucht werden: funm(a,@my_fun).
>> a=[1 2 ;3 4]
a =
1 2
3 4
>> s=funm(a,@sin)
s =
-0.4656 -0.1484
-0.2226 -0.6882
>> c=funm(a,@cos)
c =
0.8554 -0.1109
-0.1663 0.6891
>> norm(s^2 + c^2 - eye(size(a)))
ans =
6.9184e-16
>>
Die Eigenwertzerlegung in der angegebenen Form, d.h. mit diagonalem
existiert nicht immer. Für weitere Informationen siehe die
Schurzerlegung: help schur.